On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
Applications of Mathematics, Tome 60 (2015) no. 5, pp. 501-526.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than $p$ with an integer $p\geq 1$. In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.
DOI : 10.1007/s10492-015-0109-3
Classification : 65M60, 65M99
Keywords: nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability
@article{10_1007_s10492_015_0109_3,
     author = {Bal\'azsov\'a, Monika and Feistauer, Miloslav},
     title = {On the stability of the {ALE} space-time discontinuous {Galerkin} method for nonlinear convection-diffusion problems in time-dependent domains},
     journal = {Applications of Mathematics},
     pages = {501--526},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {2015},
     doi = {10.1007/s10492-015-0109-3},
     mrnumber = {3396478},
     zbl = {06486923},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0109-3/}
}
TY  - JOUR
AU  - Balázsová, Monika
AU  - Feistauer, Miloslav
TI  - On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
JO  - Applications of Mathematics
PY  - 2015
SP  - 501
EP  - 526
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0109-3/
DO  - 10.1007/s10492-015-0109-3
LA  - en
ID  - 10_1007_s10492_015_0109_3
ER  - 
%0 Journal Article
%A Balázsová, Monika
%A Feistauer, Miloslav
%T On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
%J Applications of Mathematics
%D 2015
%P 501-526
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0109-3/
%R 10.1007/s10492-015-0109-3
%G en
%F 10_1007_s10492_015_0109_3
Balázsová, Monika; Feistauer, Miloslav. On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains. Applications of Mathematics, Tome 60 (2015) no. 5, pp. 501-526. doi : 10.1007/s10492-015-0109-3. http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0109-3/

Cité par Sources :