Divergence of FEM: Babuška-Aziz triangulations revisited
Applications of Mathematics, Tome 60 (2015) no. 5, pp. 473-484
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
By re-examining the arguments and counterexamples in I. Babuška, A. K. Aziz (1976) concerning the well-known maximum angle condition, we study the convergence behavior of the linear finite element method (FEM) on a family of distorted triangulations of the unit square originally introduced by H. Schwarz in 1880. For a Poisson problem with polynomial solution, we demonstrate arbitrarily slow convergence as well as failure of convergence if the distortion of the triangulations grows sufficiently fast. This seems to be the first formal proof of divergence of the FEM for a standard elliptic problem with smooth solution.
DOI :
10.1007/s10492-015-0107-5
Classification :
65N12, 65N15, 65N30
Keywords: finite elements; error bounds; divergence; maximum angle condition; triangulation
Keywords: finite elements; error bounds; divergence; maximum angle condition; triangulation
@article{10_1007_s10492_015_0107_5,
author = {Oswald, Peter},
title = {Divergence of {FEM:} {Babu\v{s}ka-Aziz} triangulations revisited},
journal = {Applications of Mathematics},
pages = {473--484},
publisher = {mathdoc},
volume = {60},
number = {5},
year = {2015},
doi = {10.1007/s10492-015-0107-5},
mrnumber = {3396476},
zbl = {06486921},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0107-5/}
}
TY - JOUR AU - Oswald, Peter TI - Divergence of FEM: Babuška-Aziz triangulations revisited JO - Applications of Mathematics PY - 2015 SP - 473 EP - 484 VL - 60 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0107-5/ DO - 10.1007/s10492-015-0107-5 LA - en ID - 10_1007_s10492_015_0107_5 ER -
Oswald, Peter. Divergence of FEM: Babuška-Aziz triangulations revisited. Applications of Mathematics, Tome 60 (2015) no. 5, pp. 473-484. doi: 10.1007/s10492-015-0107-5
Cité par Sources :