Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems
Applications of Mathematics, Tome 60 (2015) no. 4, pp. 343-353
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We discuss the discrete $p$-Laplacian eigenvalue problem, \[ \begin {cases} \Delta (\phi _p(\Delta u(k-1)))+\lambda a(k)g(u(k))=0,\quad k\in \{1,2, \ldots , T\},\\ u(0)=u(T+1)=0, \end {cases} \] where $T>1$ is a given positive integer and $\phi _p(x):=|x|^{p-2}x$, $p > 1$. First, the existence of an unbounded continuum $\mathcal {C}$ of positive solutions emanating from $(\lambda , u)=(0,0)$ is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any $\lambda >0$ and all solutions are ordered. Thus the continuum $\mathcal {C}$ is a monotone continuous curve globally defined for all $\lambda >0$.
We discuss the discrete $p$-Laplacian eigenvalue problem, \[ \begin {cases} \Delta (\phi _p(\Delta u(k-1)))+\lambda a(k)g(u(k))=0,\quad k\in \{1,2, \ldots , T\},\\ u(0)=u(T+1)=0, \end {cases} \] where $T>1$ is a given positive integer and $\phi _p(x):=|x|^{p-2}x$, $p > 1$. First, the existence of an unbounded continuum $\mathcal {C}$ of positive solutions emanating from $(\lambda , u)=(0,0)$ is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any $\lambda >0$ and all solutions are ordered. Thus the continuum $\mathcal {C}$ is a monotone continuous curve globally defined for all $\lambda >0$.
DOI :
10.1007/s10492-015-0100-z
Classification :
34B09, 39A10, 39A12
Keywords: discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method
Keywords: discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method
@article{10_1007_s10492_015_0100_z,
author = {Bai, Dingyong and Chen, Yuming},
title = {Global continuum of positive solutions for discrete $p${-Laplacian} eigenvalue problems},
journal = {Applications of Mathematics},
pages = {343--353},
year = {2015},
volume = {60},
number = {4},
doi = {10.1007/s10492-015-0100-z},
mrnumber = {3396469},
zbl = {06486915},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0100-z/}
}
TY - JOUR AU - Bai, Dingyong AU - Chen, Yuming TI - Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems JO - Applications of Mathematics PY - 2015 SP - 343 EP - 353 VL - 60 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0100-z/ DO - 10.1007/s10492-015-0100-z LA - en ID - 10_1007_s10492_015_0100_z ER -
%0 Journal Article %A Bai, Dingyong %A Chen, Yuming %T Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems %J Applications of Mathematics %D 2015 %P 343-353 %V 60 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0100-z/ %R 10.1007/s10492-015-0100-z %G en %F 10_1007_s10492_015_0100_z
Bai, Dingyong; Chen, Yuming. Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems. Applications of Mathematics, Tome 60 (2015) no. 4, pp. 343-353. doi: 10.1007/s10492-015-0100-z
Cité par Sources :