Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems
Applications of Mathematics, Tome 60 (2015) no. 4, pp. 343-353.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss the discrete $p$-Laplacian eigenvalue problem, \[ \begin {cases} \Delta (\phi _p(\Delta u(k-1)))+\lambda a(k)g(u(k))=0,\quad k\in \{1,2, \ldots , T\},\\ u(0)=u(T+1)=0, \end {cases} \] where $T>1$ is a given positive integer and $\phi _p(x):=|x|^{p-2}x$, $p > 1$. First, the existence of an unbounded continuum $\mathcal {C}$ of positive solutions emanating from $(\lambda , u)=(0,0)$ is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any $\lambda >0$ and all solutions are ordered. Thus the continuum $\mathcal {C}$ is a monotone continuous curve globally defined for all $\lambda >0$.
DOI : 10.1007/s10492-015-0100-z
Classification : 34B09, 39A10, 39A12
Keywords: discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method
@article{10_1007_s10492_015_0100_z,
     author = {Bai, Dingyong and Chen, Yuming},
     title = {Global continuum of positive solutions for discrete $p${-Laplacian} eigenvalue problems},
     journal = {Applications of Mathematics},
     pages = {343--353},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {2015},
     doi = {10.1007/s10492-015-0100-z},
     mrnumber = {3396469},
     zbl = {06486915},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0100-z/}
}
TY  - JOUR
AU  - Bai, Dingyong
AU  - Chen, Yuming
TI  - Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems
JO  - Applications of Mathematics
PY  - 2015
SP  - 343
EP  - 353
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0100-z/
DO  - 10.1007/s10492-015-0100-z
LA  - en
ID  - 10_1007_s10492_015_0100_z
ER  - 
%0 Journal Article
%A Bai, Dingyong
%A Chen, Yuming
%T Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems
%J Applications of Mathematics
%D 2015
%P 343-353
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0100-z/
%R 10.1007/s10492-015-0100-z
%G en
%F 10_1007_s10492_015_0100_z
Bai, Dingyong; Chen, Yuming. Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems. Applications of Mathematics, Tome 60 (2015) no. 4, pp. 343-353. doi : 10.1007/s10492-015-0100-z. http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0100-z/

Cité par Sources :