The Sturm-Liouville Friedrichs extension
Applications of Mathematics, Tome 60 (2015) no. 3, pp. 299-320.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The characterization of the domain of the Friedrichs extension as a restriction of the maximal domain is well known. It depends on principal solutions. Here we establish a characterization as an extension of the minimal domain. Our proof is different and closer in spirit to the Friedrichs construction. It starts with the assumption that the minimal operator is bounded below and does not directly use oscillation theory.
DOI : 10.1007/s10492-015-0097-3
Classification : 34B05, 34L05, 47B25
Keywords: Sturm-Liouville operator; Friedrichs extension
@article{10_1007_s10492_015_0097_3,
     author = {Yao, Siqin and Sun, Jiong and Zettl, Anton},
     title = {The {Sturm-Liouville} {Friedrichs} extension},
     journal = {Applications of Mathematics},
     pages = {299--320},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2015},
     doi = {10.1007/s10492-015-0097-3},
     mrnumber = {3419964},
     zbl = {06486913},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0097-3/}
}
TY  - JOUR
AU  - Yao, Siqin
AU  - Sun, Jiong
AU  - Zettl, Anton
TI  - The Sturm-Liouville Friedrichs extension
JO  - Applications of Mathematics
PY  - 2015
SP  - 299
EP  - 320
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0097-3/
DO  - 10.1007/s10492-015-0097-3
LA  - en
ID  - 10_1007_s10492_015_0097_3
ER  - 
%0 Journal Article
%A Yao, Siqin
%A Sun, Jiong
%A Zettl, Anton
%T The Sturm-Liouville Friedrichs extension
%J Applications of Mathematics
%D 2015
%P 299-320
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0097-3/
%R 10.1007/s10492-015-0097-3
%G en
%F 10_1007_s10492_015_0097_3
Yao, Siqin; Sun, Jiong; Zettl, Anton. The Sturm-Liouville Friedrichs extension. Applications of Mathematics, Tome 60 (2015) no. 3, pp. 299-320. doi : 10.1007/s10492-015-0097-3. http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0097-3/

Cité par Sources :