On a general structure of the bivariate FGM type distributions
Applications of Mathematics, Tome 60 (2015) no. 1, pp. 91-108.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we study a general structure for the so-called Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions. Through examples we show how to use the proposed structure to study dependence properties of the FGM type distributions by a general approach.
DOI : 10.1007/s10492-015-0086-6
Classification : 62E15, 62H10
Keywords: copula; dependence; FGM family; measure of association
@article{10_1007_s10492_015_0086_6,
     author = {Mirhosseini, Sayed Mohsen and Amini, Mohammad and Dolati, Ali},
     title = {On a general structure of the bivariate {FGM} type distributions},
     journal = {Applications of Mathematics},
     pages = {91--108},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2015},
     doi = {10.1007/s10492-015-0086-6},
     mrnumber = {3299874},
     zbl = {06391463},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0086-6/}
}
TY  - JOUR
AU  - Mirhosseini, Sayed Mohsen
AU  - Amini, Mohammad
AU  - Dolati, Ali
TI  - On a general structure of the bivariate FGM type distributions
JO  - Applications of Mathematics
PY  - 2015
SP  - 91
EP  - 108
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0086-6/
DO  - 10.1007/s10492-015-0086-6
LA  - en
ID  - 10_1007_s10492_015_0086_6
ER  - 
%0 Journal Article
%A Mirhosseini, Sayed Mohsen
%A Amini, Mohammad
%A Dolati, Ali
%T On a general structure of the bivariate FGM type distributions
%J Applications of Mathematics
%D 2015
%P 91-108
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0086-6/
%R 10.1007/s10492-015-0086-6
%G en
%F 10_1007_s10492_015_0086_6
Mirhosseini, Sayed Mohsen; Amini, Mohammad; Dolati, Ali. On a general structure of the bivariate FGM type distributions. Applications of Mathematics, Tome 60 (2015) no. 1, pp. 91-108. doi : 10.1007/s10492-015-0086-6. http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0086-6/

Cité par Sources :