Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
Applications of Mathematics, Tome 60 (2015) no. 1, pp. 1-20.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in $d$ space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order $k+1$ in the $L_2$-norm if the method uses polynomials of order $k$. Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order $k+1$. Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the $L_2$-norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis.
DOI : 10.1007/s10492-015-0082-x
Classification : 65M60, 65N15, 65N30
Keywords: discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate
@article{10_1007_s10492_015_0082_x,
     author = {Zhang, Tie and Zhang, Shuhua},
     title = {Optimal convergence and a posteriori error analysis of the original {DG} method for advection-reaction equations},
     journal = {Applications of Mathematics},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2015},
     doi = {10.1007/s10492-015-0082-x},
     mrnumber = {3299870},
     zbl = {06391459},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0082-x/}
}
TY  - JOUR
AU  - Zhang, Tie
AU  - Zhang, Shuhua
TI  - Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
JO  - Applications of Mathematics
PY  - 2015
SP  - 1
EP  - 20
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0082-x/
DO  - 10.1007/s10492-015-0082-x
LA  - en
ID  - 10_1007_s10492_015_0082_x
ER  - 
%0 Journal Article
%A Zhang, Tie
%A Zhang, Shuhua
%T Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
%J Applications of Mathematics
%D 2015
%P 1-20
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0082-x/
%R 10.1007/s10492-015-0082-x
%G en
%F 10_1007_s10492_015_0082_x
Zhang, Tie; Zhang, Shuhua. Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations. Applications of Mathematics, Tome 60 (2015) no. 1, pp. 1-20. doi : 10.1007/s10492-015-0082-x. http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0082-x/

Cité par Sources :