Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
Applications of Mathematics, Tome 60 (2015) no. 1, pp. 1-20
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in $d$ space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order $k+1$ in the $L_2$-norm if the method uses polynomials of order $k$. Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order $k+1$. Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the $L_2$-norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis.
DOI :
10.1007/s10492-015-0082-x
Classification :
65M60, 65N15, 65N30
Keywords: discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate
Keywords: discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate
@article{10_1007_s10492_015_0082_x,
author = {Zhang, Tie and Zhang, Shuhua},
title = {Optimal convergence and a posteriori error analysis of the original {DG} method for advection-reaction equations},
journal = {Applications of Mathematics},
pages = {1--20},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {2015},
doi = {10.1007/s10492-015-0082-x},
mrnumber = {3299870},
zbl = {06391459},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0082-x/}
}
TY - JOUR AU - Zhang, Tie AU - Zhang, Shuhua TI - Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations JO - Applications of Mathematics PY - 2015 SP - 1 EP - 20 VL - 60 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0082-x/ DO - 10.1007/s10492-015-0082-x LA - en ID - 10_1007_s10492_015_0082_x ER -
%0 Journal Article %A Zhang, Tie %A Zhang, Shuhua %T Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations %J Applications of Mathematics %D 2015 %P 1-20 %V 60 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-015-0082-x/ %R 10.1007/s10492-015-0082-x %G en %F 10_1007_s10492_015_0082_x
Zhang, Tie; Zhang, Shuhua. Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations. Applications of Mathematics, Tome 60 (2015) no. 1, pp. 1-20. doi: 10.1007/s10492-015-0082-x
Cité par Sources :