Dirichlet-Neumann alternating algorithm for an exterior anisotropic quasilinear elliptic problem
Applications of Mathematics, Tome 59 (2014) no. 3, pp. 285-301
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, by the Kirchhoff transformation, a Dirichlet-Neumann (D-N) alternating algorithm which is a non-overlapping domain decomposition method based on natural boundary reduction is discussed for solving exterior anisotropic quasilinear problems with circular artificial boundary. By the principle of the natural boundary reduction, we obtain natural integral equation for the anisotropic quasilinear problems on circular artificial boundaries and construct the algorithm and analyze its convergence. Moreover, the convergence rate is obtained in detail for a typical domain. Finally, some numerical examples are presented to illustrate the feasibility of the method.
In this paper, by the Kirchhoff transformation, a Dirichlet-Neumann (D-N) alternating algorithm which is a non-overlapping domain decomposition method based on natural boundary reduction is discussed for solving exterior anisotropic quasilinear problems with circular artificial boundary. By the principle of the natural boundary reduction, we obtain natural integral equation for the anisotropic quasilinear problems on circular artificial boundaries and construct the algorithm and analyze its convergence. Moreover, the convergence rate is obtained in detail for a typical domain. Finally, some numerical examples are presented to illustrate the feasibility of the method.
DOI : 10.1007/s10492-014-0055-5
Classification : 35J62, 35J65, 65N30, 65N55
Keywords: quasilinear elliptic equation; domain decomposition method; natural integral equation
@article{10_1007_s10492_014_0055_5,
     author = {Liu, Baoqing and Du, Qikui},
     title = {Dirichlet-Neumann alternating algorithm for an exterior anisotropic quasilinear elliptic problem},
     journal = {Applications of Mathematics},
     pages = {285--301},
     year = {2014},
     volume = {59},
     number = {3},
     doi = {10.1007/s10492-014-0055-5},
     mrnumber = {3232631},
     zbl = {06362227},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0055-5/}
}
TY  - JOUR
AU  - Liu, Baoqing
AU  - Du, Qikui
TI  - Dirichlet-Neumann alternating algorithm for an exterior anisotropic quasilinear elliptic problem
JO  - Applications of Mathematics
PY  - 2014
SP  - 285
EP  - 301
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0055-5/
DO  - 10.1007/s10492-014-0055-5
LA  - en
ID  - 10_1007_s10492_014_0055_5
ER  - 
%0 Journal Article
%A Liu, Baoqing
%A Du, Qikui
%T Dirichlet-Neumann alternating algorithm for an exterior anisotropic quasilinear elliptic problem
%J Applications of Mathematics
%D 2014
%P 285-301
%V 59
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0055-5/
%R 10.1007/s10492-014-0055-5
%G en
%F 10_1007_s10492_014_0055_5
Liu, Baoqing; Du, Qikui. Dirichlet-Neumann alternating algorithm for an exterior anisotropic quasilinear elliptic problem. Applications of Mathematics, Tome 59 (2014) no. 3, pp. 285-301. doi: 10.1007/s10492-014-0055-5

Cité par Sources :