Weaker convergence conditions for the secant method
Applications of Mathematics, Tome 59 (2014) no. 3, pp. 265-284
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.
DOI :
10.1007/s10492-014-0054-6
Classification :
49M15, 65B05, 65G99, 65H10, 65J15, 65N30
Keywords: semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative
Keywords: semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative
@article{10_1007_s10492_014_0054_6,
author = {Argyros, Ioannis K. and Hilout, Sa{\"\i}d},
title = {Weaker convergence conditions for the secant method},
journal = {Applications of Mathematics},
pages = {265--284},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {2014},
doi = {10.1007/s10492-014-0054-6},
mrnumber = {3232630},
zbl = {06362226},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0054-6/}
}
TY - JOUR AU - Argyros, Ioannis K. AU - Hilout, Saïd TI - Weaker convergence conditions for the secant method JO - Applications of Mathematics PY - 2014 SP - 265 EP - 284 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0054-6/ DO - 10.1007/s10492-014-0054-6 LA - en ID - 10_1007_s10492_014_0054_6 ER -
%0 Journal Article %A Argyros, Ioannis K. %A Hilout, Saïd %T Weaker convergence conditions for the secant method %J Applications of Mathematics %D 2014 %P 265-284 %V 59 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0054-6/ %R 10.1007/s10492-014-0054-6 %G en %F 10_1007_s10492_014_0054_6
Argyros, Ioannis K.; Hilout, Saïd. Weaker convergence conditions for the secant method. Applications of Mathematics, Tome 59 (2014) no. 3, pp. 265-284. doi: 10.1007/s10492-014-0054-6
Cité par Sources :