A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
DOI :
10.1007/s10492-014-0052-8
Classification :
65L10, 65L11, 65L50, 65L60, 65L70
Keywords: reaction-diffusion problem; singular perturbation; mesh adaptation
Keywords: reaction-diffusion problem; singular perturbation; mesh adaptation
@article{10_1007_s10492_014_0052_8,
author = {Lin{\ss}, Torsten},
title = {A posteriori error estimation for arbitrary order {FEM} applied to singularly perturbed one-dimensional reaction-diffusion problems},
journal = {Applications of Mathematics},
pages = {241--256},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {2014},
doi = {10.1007/s10492-014-0052-8},
mrnumber = {3232628},
zbl = {06362224},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/}
}
TY - JOUR AU - Linß, Torsten TI - A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems JO - Applications of Mathematics PY - 2014 SP - 241 EP - 256 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/ DO - 10.1007/s10492-014-0052-8 LA - en ID - 10_1007_s10492_014_0052_8 ER -
%0 Journal Article %A Linß, Torsten %T A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems %J Applications of Mathematics %D 2014 %P 241-256 %V 59 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/ %R 10.1007/s10492-014-0052-8 %G en %F 10_1007_s10492_014_0052_8
Linß, Torsten. A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems. Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256. doi: 10.1007/s10492-014-0052-8
Cité par Sources :