A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256
FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
DOI :
10.1007/s10492-014-0052-8
Classification :
65L10, 65L11, 65L50, 65L60, 65L70
Keywords: reaction-diffusion problem; singular perturbation; mesh adaptation
Keywords: reaction-diffusion problem; singular perturbation; mesh adaptation
@article{10_1007_s10492_014_0052_8,
author = {Lin{\ss}, Torsten},
title = {A posteriori error estimation for arbitrary order {FEM} applied to singularly perturbed one-dimensional reaction-diffusion problems},
journal = {Applications of Mathematics},
pages = {241--256},
year = {2014},
volume = {59},
number = {3},
doi = {10.1007/s10492-014-0052-8},
mrnumber = {3232628},
zbl = {06362224},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/}
}
TY - JOUR AU - Linß, Torsten TI - A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems JO - Applications of Mathematics PY - 2014 SP - 241 EP - 256 VL - 59 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/ DO - 10.1007/s10492-014-0052-8 LA - en ID - 10_1007_s10492_014_0052_8 ER -
%0 Journal Article %A Linß, Torsten %T A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems %J Applications of Mathematics %D 2014 %P 241-256 %V 59 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/ %R 10.1007/s10492-014-0052-8 %G en %F 10_1007_s10492_014_0052_8
Linß, Torsten. A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems. Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256. doi: 10.1007/s10492-014-0052-8
Cité par Sources :