Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_014_0052_8, author = {Lin{\ss}, Torsten}, title = {A posteriori error estimation for arbitrary order {FEM} applied to singularly perturbed one-dimensional reaction-diffusion problems}, journal = {Applications of Mathematics}, pages = {241--256}, publisher = {mathdoc}, volume = {59}, number = {3}, year = {2014}, doi = {10.1007/s10492-014-0052-8}, mrnumber = {3232628}, zbl = {06362224}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/} }
TY - JOUR AU - Linß, Torsten TI - A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems JO - Applications of Mathematics PY - 2014 SP - 241 EP - 256 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/ DO - 10.1007/s10492-014-0052-8 LA - en ID - 10_1007_s10492_014_0052_8 ER -
%0 Journal Article %A Linß, Torsten %T A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems %J Applications of Mathematics %D 2014 %P 241-256 %V 59 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/ %R 10.1007/s10492-014-0052-8 %G en %F 10_1007_s10492_014_0052_8
Linß, Torsten. A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems. Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256. doi : 10.1007/s10492-014-0052-8. http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/
Cité par Sources :