A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
DOI : 10.1007/s10492-014-0052-8
Classification : 65L10, 65L11, 65L50, 65L60, 65L70
Keywords: reaction-diffusion problem; singular perturbation; mesh adaptation
@article{10_1007_s10492_014_0052_8,
     author = {Lin{\ss}, Torsten},
     title = {A posteriori error estimation for arbitrary order {FEM} applied to singularly perturbed one-dimensional reaction-diffusion problems},
     journal = {Applications of Mathematics},
     pages = {241--256},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2014},
     doi = {10.1007/s10492-014-0052-8},
     mrnumber = {3232628},
     zbl = {06362224},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/}
}
TY  - JOUR
AU  - Linß, Torsten
TI  - A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
JO  - Applications of Mathematics
PY  - 2014
SP  - 241
EP  - 256
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/
DO  - 10.1007/s10492-014-0052-8
LA  - en
ID  - 10_1007_s10492_014_0052_8
ER  - 
%0 Journal Article
%A Linß, Torsten
%T A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
%J Applications of Mathematics
%D 2014
%P 241-256
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/
%R 10.1007/s10492-014-0052-8
%G en
%F 10_1007_s10492_014_0052_8
Linß, Torsten. A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems. Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256. doi : 10.1007/s10492-014-0052-8. http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/

Cité par Sources :