A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
DOI : 10.1007/s10492-014-0052-8
Classification : 65L10, 65L11, 65L50, 65L60, 65L70
Keywords: reaction-diffusion problem; singular perturbation; mesh adaptation
@article{10_1007_s10492_014_0052_8,
     author = {Lin{\ss}, Torsten},
     title = {A posteriori error estimation for arbitrary order {FEM} applied to singularly perturbed one-dimensional reaction-diffusion problems},
     journal = {Applications of Mathematics},
     pages = {241--256},
     year = {2014},
     volume = {59},
     number = {3},
     doi = {10.1007/s10492-014-0052-8},
     mrnumber = {3232628},
     zbl = {06362224},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/}
}
TY  - JOUR
AU  - Linß, Torsten
TI  - A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
JO  - Applications of Mathematics
PY  - 2014
SP  - 241
EP  - 256
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/
DO  - 10.1007/s10492-014-0052-8
LA  - en
ID  - 10_1007_s10492_014_0052_8
ER  - 
%0 Journal Article
%A Linß, Torsten
%T A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
%J Applications of Mathematics
%D 2014
%P 241-256
%V 59
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0052-8/
%R 10.1007/s10492-014-0052-8
%G en
%F 10_1007_s10492_014_0052_8
Linß, Torsten. A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems. Applications of Mathematics, Tome 59 (2014) no. 3, pp. 241-256. doi: 10.1007/s10492-014-0052-8

Cité par Sources :