Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_014_0051_9, author = {Tian, Yanling}, title = {Stability for a diffusive delayed predator-prey model with modified {Leslie-Gower} and {Holling-type} {II} schemes}, journal = {Applications of Mathematics}, pages = {217--240}, publisher = {mathdoc}, volume = {59}, number = {2}, year = {2014}, doi = {10.1007/s10492-014-0051-9}, mrnumber = {3183474}, zbl = {06362223}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0051-9/} }
TY - JOUR AU - Tian, Yanling TI - Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes JO - Applications of Mathematics PY - 2014 SP - 217 EP - 240 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0051-9/ DO - 10.1007/s10492-014-0051-9 LA - en ID - 10_1007_s10492_014_0051_9 ER -
%0 Journal Article %A Tian, Yanling %T Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes %J Applications of Mathematics %D 2014 %P 217-240 %V 59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0051-9/ %R 10.1007/s10492-014-0051-9 %G en %F 10_1007_s10492_014_0051_9
Tian, Yanling. Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes. Applications of Mathematics, Tome 59 (2014) no. 2, pp. 217-240. doi : 10.1007/s10492-014-0051-9. http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0051-9/
Cité par Sources :