Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes
Applications of Mathematics, Tome 59 (2014) no. 2, pp. 217-240.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes is considered. Local stability for each constant steady state is studied by analyzing the eigenvalues. Some simple and easily verifiable sufficient conditions for global stability are obtained by virtue of the stability of the related FDE and some monotonous iterative sequences. Numerical simulations and reasonable biological explanations are carried out to illustrate the main results and the justification of the model.
DOI : 10.1007/s10492-014-0051-9
Classification : 35B25, 35K51, 35K55, 92C40, 92D25
Keywords: delayed diffusive predator-prey model; modified Leslie-Gower scheme; Holling-type II scheme; persistence; stability; eigenvalue; monotonous iterative sequence
@article{10_1007_s10492_014_0051_9,
     author = {Tian, Yanling},
     title = {Stability for a diffusive delayed predator-prey model with modified {Leslie-Gower} and {Holling-type} {II} schemes},
     journal = {Applications of Mathematics},
     pages = {217--240},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2014},
     doi = {10.1007/s10492-014-0051-9},
     mrnumber = {3183474},
     zbl = {06362223},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0051-9/}
}
TY  - JOUR
AU  - Tian, Yanling
TI  - Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes
JO  - Applications of Mathematics
PY  - 2014
SP  - 217
EP  - 240
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0051-9/
DO  - 10.1007/s10492-014-0051-9
LA  - en
ID  - 10_1007_s10492_014_0051_9
ER  - 
%0 Journal Article
%A Tian, Yanling
%T Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes
%J Applications of Mathematics
%D 2014
%P 217-240
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0051-9/
%R 10.1007/s10492-014-0051-9
%G en
%F 10_1007_s10492_014_0051_9
Tian, Yanling. Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes. Applications of Mathematics, Tome 59 (2014) no. 2, pp. 217-240. doi : 10.1007/s10492-014-0051-9. http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0051-9/

Cité par Sources :