Almost periodic solutions for a class of discrete systems with Allee-effect
Applications of Mathematics, Tome 59 (2014) no. 2, pp. 191-203.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, using Mawhin's continuation theorem of the coincidence degree theory, we obtain some sufficient conditions for the existence of positive almost periodic solutions for a class of delay discrete models with Allee-effect.
DOI : 10.1007/s10492-014-0049-3
Classification : 34K14, 92D25
Keywords: discrete system; coincidence degree; almost periodic solution; Allee-effect
@article{10_1007_s10492_014_0049_3,
     author = {Li, Yongkun and Yang, Li and Wu, Wanqin},
     title = {Almost periodic solutions for a class of discrete systems with {Allee-effect}},
     journal = {Applications of Mathematics},
     pages = {191--203},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2014},
     doi = {10.1007/s10492-014-0049-3},
     mrnumber = {3183472},
     zbl = {06362221},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0049-3/}
}
TY  - JOUR
AU  - Li, Yongkun
AU  - Yang, Li
AU  - Wu, Wanqin
TI  - Almost periodic solutions for a class of discrete systems with Allee-effect
JO  - Applications of Mathematics
PY  - 2014
SP  - 191
EP  - 203
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0049-3/
DO  - 10.1007/s10492-014-0049-3
LA  - en
ID  - 10_1007_s10492_014_0049_3
ER  - 
%0 Journal Article
%A Li, Yongkun
%A Yang, Li
%A Wu, Wanqin
%T Almost periodic solutions for a class of discrete systems with Allee-effect
%J Applications of Mathematics
%D 2014
%P 191-203
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0049-3/
%R 10.1007/s10492-014-0049-3
%G en
%F 10_1007_s10492_014_0049_3
Li, Yongkun; Yang, Li; Wu, Wanqin. Almost periodic solutions for a class of discrete systems with Allee-effect. Applications of Mathematics, Tome 59 (2014) no. 2, pp. 191-203. doi : 10.1007/s10492-014-0049-3. http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0049-3/

Cité par Sources :