A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
Applications of Mathematics, Tome 59 (2014) no. 2, pp. 121-144
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.
DOI :
10.1007/s10492-014-0045-7
Classification :
65M15, 65M60
Keywords: discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function
Keywords: discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function
@article{10_1007_s10492_014_0045_7,
author = {\v{S}ebestov\'a, Ivana},
title = {A posteriori upper and lower error bound of the high-order discontinuous {Galerkin} method for the heat conduction equation},
journal = {Applications of Mathematics},
pages = {121--144},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {2014},
doi = {10.1007/s10492-014-0045-7},
mrnumber = {3183468},
zbl = {06362217},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/}
}
TY - JOUR AU - Šebestová, Ivana TI - A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation JO - Applications of Mathematics PY - 2014 SP - 121 EP - 144 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/ DO - 10.1007/s10492-014-0045-7 LA - en ID - 10_1007_s10492_014_0045_7 ER -
%0 Journal Article %A Šebestová, Ivana %T A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation %J Applications of Mathematics %D 2014 %P 121-144 %V 59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/ %R 10.1007/s10492-014-0045-7 %G en %F 10_1007_s10492_014_0045_7
Šebestová, Ivana. A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation. Applications of Mathematics, Tome 59 (2014) no. 2, pp. 121-144. doi: 10.1007/s10492-014-0045-7
Cité par Sources :