A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
Applications of Mathematics, Tome 59 (2014) no. 2, pp. 121-144.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.
DOI : 10.1007/s10492-014-0045-7
Classification : 65M15, 65M60
Keywords: discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function
@article{10_1007_s10492_014_0045_7,
     author = {\v{S}ebestov\'a, Ivana},
     title = {A posteriori upper and lower error bound of the high-order discontinuous {Galerkin} method for the heat conduction equation},
     journal = {Applications of Mathematics},
     pages = {121--144},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2014},
     doi = {10.1007/s10492-014-0045-7},
     mrnumber = {3183468},
     zbl = {06362217},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/}
}
TY  - JOUR
AU  - Šebestová, Ivana
TI  - A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
JO  - Applications of Mathematics
PY  - 2014
SP  - 121
EP  - 144
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/
DO  - 10.1007/s10492-014-0045-7
LA  - en
ID  - 10_1007_s10492_014_0045_7
ER  - 
%0 Journal Article
%A Šebestová, Ivana
%T A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
%J Applications of Mathematics
%D 2014
%P 121-144
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/
%R 10.1007/s10492-014-0045-7
%G en
%F 10_1007_s10492_014_0045_7
Šebestová, Ivana. A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation. Applications of Mathematics, Tome 59 (2014) no. 2, pp. 121-144. doi : 10.1007/s10492-014-0045-7. http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/

Cité par Sources :