Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_014_0045_7, author = {\v{S}ebestov\'a, Ivana}, title = {A posteriori upper and lower error bound of the high-order discontinuous {Galerkin} method for the heat conduction equation}, journal = {Applications of Mathematics}, pages = {121--144}, publisher = {mathdoc}, volume = {59}, number = {2}, year = {2014}, doi = {10.1007/s10492-014-0045-7}, mrnumber = {3183468}, zbl = {06362217}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/} }
TY - JOUR AU - Šebestová, Ivana TI - A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation JO - Applications of Mathematics PY - 2014 SP - 121 EP - 144 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/ DO - 10.1007/s10492-014-0045-7 LA - en ID - 10_1007_s10492_014_0045_7 ER -
%0 Journal Article %A Šebestová, Ivana %T A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation %J Applications of Mathematics %D 2014 %P 121-144 %V 59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/ %R 10.1007/s10492-014-0045-7 %G en %F 10_1007_s10492_014_0045_7
Šebestová, Ivana. A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation. Applications of Mathematics, Tome 59 (2014) no. 2, pp. 121-144. doi : 10.1007/s10492-014-0045-7. http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0045-7/
Cité par Sources :