Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces
Applications of Mathematics, Tome 59 (2014) no. 1, pp. 99-120.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we use a monotone iterative technique in the presence of the lower and upper solutions to discuss the existence of mild solutions for a class of semilinear impulsive integro-differential evolution equations of Volterra type with nonlocal conditions in a Banach space $E$ $$ \begin{cases} u'(t)+Au(t)= f(t,u(t),Gu(t)),\quad t\in J, t\neq t_k, \Delta u |_{t=t_k}=u(t_k^+)-u(t_k^-)=I_k(u(t_k)),\quad k=1,2,\dots ,m, u(0)=g(u)+x_0, \end{cases} $$ where $A\colon D(A)\subset E\to E$ is a closed linear operator and $-A$ generates a strongly continuous semigroup $T(t)$ $(t\geq 0)$ on $E$, $f\in C(J\times E\times E, E)$, $J=[0,a]$, $0$, $I_k\in C(E,E)$, $k=1,2,\dots ,m$, and $g$ constitutes a nonlocal condition. Under suitable monotonicity conditions and noncompactness measure conditions, we obtain the existence of the extremal mild solutions between the lower and upper solutions assuming that $-A$ generates a compact semigroup, a strongly continuous semigroup or an equicontinuous semigroup. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. Some concrete applications to partial differential equations are considered.
DOI : 10.1007/s10492-014-0044-8
Classification : 34K07, 34K30, 34K45, 47D06, 47J25
Keywords: evolution equation; impulsive integro-differential equation; nonlocal condition; lower and upper solutions; monotone iterative technique; mild solution
@article{10_1007_s10492_014_0044_8,
     author = {Chen, Pengyu and Li, Yongxiang},
     title = {Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in {Banach} spaces},
     journal = {Applications of Mathematics},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2014},
     doi = {10.1007/s10492-014-0044-8},
     mrnumber = {3164579},
     zbl = {06346375},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0044-8/}
}
TY  - JOUR
AU  - Chen, Pengyu
AU  - Li, Yongxiang
TI  - Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces
JO  - Applications of Mathematics
PY  - 2014
SP  - 99
EP  - 120
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0044-8/
DO  - 10.1007/s10492-014-0044-8
LA  - en
ID  - 10_1007_s10492_014_0044_8
ER  - 
%0 Journal Article
%A Chen, Pengyu
%A Li, Yongxiang
%T Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces
%J Applications of Mathematics
%D 2014
%P 99-120
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0044-8/
%R 10.1007/s10492-014-0044-8
%G en
%F 10_1007_s10492_014_0044_8
Chen, Pengyu; Li, Yongxiang. Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces. Applications of Mathematics, Tome 59 (2014) no. 1, pp. 99-120. doi : 10.1007/s10492-014-0044-8. http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0044-8/

Cité par Sources :