Existence of positive periodic solutions of higher-order functional difference equations
Applications of Mathematics, Tome 59 (2014) no. 1, pp. 25-36
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Based on the fixed-point theorem in a cone and some analysis skill, a new sufficient condition is obtained for the existence of positive periodic solutions for a class of higher-order functional difference equations. An example is used to illustrate the applicability of the main result.
DOI :
10.1007/s10492-014-0039-5
Classification :
34K13, 39A23, 39A70
Keywords: positive periodic solution; existence of positive periodic solution; fixed-point theorem; difference equation
Keywords: positive periodic solution; existence of positive periodic solution; fixed-point theorem; difference equation
@article{10_1007_s10492_014_0039_5,
author = {Liu, Xin-Ge and Tang, Mei-Lan},
title = {Existence of positive periodic solutions of higher-order functional difference equations},
journal = {Applications of Mathematics},
pages = {25--36},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2014},
doi = {10.1007/s10492-014-0039-5},
mrnumber = {3164574},
zbl = {06346370},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0039-5/}
}
TY - JOUR AU - Liu, Xin-Ge AU - Tang, Mei-Lan TI - Existence of positive periodic solutions of higher-order functional difference equations JO - Applications of Mathematics PY - 2014 SP - 25 EP - 36 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0039-5/ DO - 10.1007/s10492-014-0039-5 LA - en ID - 10_1007_s10492_014_0039_5 ER -
%0 Journal Article %A Liu, Xin-Ge %A Tang, Mei-Lan %T Existence of positive periodic solutions of higher-order functional difference equations %J Applications of Mathematics %D 2014 %P 25-36 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0039-5/ %R 10.1007/s10492-014-0039-5 %G en %F 10_1007_s10492_014_0039_5
Liu, Xin-Ge; Tang, Mei-Lan. Existence of positive periodic solutions of higher-order functional difference equations. Applications of Mathematics, Tome 59 (2014) no. 1, pp. 25-36. doi: 10.1007/s10492-014-0039-5
Cité par Sources :