Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations
Applications of Mathematics, Tome 59 (2014) no. 1, pp. 1-13
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.
DOI :
10.1007/s10492-014-0037-7
Classification :
35P05, 35Q35, 47A75, 49R05, 65N25, 74F10, 74H45, 76Q05
Keywords: eigenvalue problem; fluid-solid vibration; variational characterization; minmax principle; maxmin principle
Keywords: eigenvalue problem; fluid-solid vibration; variational characterization; minmax principle; maxmin principle
@article{10_1007_s10492_014_0037_7,
author = {Stammberger, Markus and Voss, Heinrich},
title = {Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations},
journal = {Applications of Mathematics},
pages = {1--13},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2014},
doi = {10.1007/s10492-014-0037-7},
mrnumber = {3164572},
zbl = {06346368},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0037-7/}
}
TY - JOUR AU - Stammberger, Markus AU - Voss, Heinrich TI - Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations JO - Applications of Mathematics PY - 2014 SP - 1 EP - 13 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0037-7/ DO - 10.1007/s10492-014-0037-7 LA - en ID - 10_1007_s10492_014_0037_7 ER -
%0 Journal Article %A Stammberger, Markus %A Voss, Heinrich %T Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations %J Applications of Mathematics %D 2014 %P 1-13 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-014-0037-7/ %R 10.1007/s10492-014-0037-7 %G en %F 10_1007_s10492_014_0037_7
Stammberger, Markus; Voss, Heinrich. Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations. Applications of Mathematics, Tome 59 (2014) no. 1, pp. 1-13. doi: 10.1007/s10492-014-0037-7
Cité par Sources :