Two-level stabilized nonconforming finite element method for the Stokes equations
Applications of Mathematics, Tome 58 (2013) no. 6, pp. 643-656
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the $NCP_{1}-P_{1}$ pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size $H$ and a large stabilized Stokes problem on a fine mesh size $h=H/3$. Numerical results are presented to show the convergence performance of this combined algorithm.
In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the $NCP_{1}-P_{1}$ pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size $H$ and a large stabilized Stokes problem on a fine mesh size $h=H/3$. Numerical results are presented to show the convergence performance of this combined algorithm.
DOI :
10.1007/s10492-013-0032-4
Classification :
65M12, 65M60, 76D07
Keywords: Stokes problem; two-level method; nonconforming finite element; error estimate; numerical result
Keywords: Stokes problem; two-level method; nonconforming finite element; error estimate; numerical result
@article{10_1007_s10492_013_0032_4,
author = {Su, Haiyan and Huang, Pengzhan and Feng, Xinlong},
title = {Two-level stabilized nonconforming finite element method for the {Stokes} equations},
journal = {Applications of Mathematics},
pages = {643--656},
year = {2013},
volume = {58},
number = {6},
doi = {10.1007/s10492-013-0032-4},
mrnumber = {3162752},
zbl = {06312919},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0032-4/}
}
TY - JOUR AU - Su, Haiyan AU - Huang, Pengzhan AU - Feng, Xinlong TI - Two-level stabilized nonconforming finite element method for the Stokes equations JO - Applications of Mathematics PY - 2013 SP - 643 EP - 656 VL - 58 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0032-4/ DO - 10.1007/s10492-013-0032-4 LA - en ID - 10_1007_s10492_013_0032_4 ER -
%0 Journal Article %A Su, Haiyan %A Huang, Pengzhan %A Feng, Xinlong %T Two-level stabilized nonconforming finite element method for the Stokes equations %J Applications of Mathematics %D 2013 %P 643-656 %V 58 %N 6 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0032-4/ %R 10.1007/s10492-013-0032-4 %G en %F 10_1007_s10492_013_0032_4
Su, Haiyan; Huang, Pengzhan; Feng, Xinlong. Two-level stabilized nonconforming finite element method for the Stokes equations. Applications of Mathematics, Tome 58 (2013) no. 6, pp. 643-656. doi: 10.1007/s10492-013-0032-4
Cité par Sources :