Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth
Applications of Mathematics, Tome 58 (2013) no. 5, pp. 555-593.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Omega \subset \mathbb R^n$, $n\geq 2$, be a bounded connected domain of the class $C^{1,\theta }$ for some $\theta \in (0,1]$. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem $$ \displaylines { u\in W^1 L^{\Phi }(\Omega ), \quad -\operatorname {div}\Big (\Phi '(|\nabla u|)\frac {\nabla u}{|\nabla u|}\Big ) +V(x)\Phi '(|u|)\frac {u}{|u|}=f(x,u)+\mu h(x)\quad \text {in} \Omega ,\cr \frac {\partial u}{\partial {\bf n}}=0\quad \text {on} \partial \Omega ,\cr } $$ where $\Phi $ is a Young function such that the space $W^1 L^{\Phi }(\Omega )$ is embedded into exponential or multiple exponential Orlicz space, the nonlinearity $f(x,t)$ has the corresponding critical growth, $V(x)$ is a continuous potential, $h\in (L^{\Phi }(\Omega ))^*$ is a nontrivial continuous function, $\mu \geq 0$ is a small parameter and ${\bf n}$ denotes the outward unit normal to $\partial \Omega $.
DOI : 10.1007/s10492-013-0028-0
Classification : 26D10, 46E30, 46E35
Keywords: Orlicz-Sobolev space; Mountain Pass Theorem; Palais-Smale sequence; Ekeland Variational Principle
@article{10_1007_s10492_013_0028_0,
     author = {\v{C}ern\'y, Robert},
     title = {Generalized $n${-Laplacian:} semilinear {Neumann} problem with the critical growth},
     journal = {Applications of Mathematics},
     pages = {555--593},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {2013},
     doi = {10.1007/s10492-013-0028-0},
     mrnumber = {3104618},
     zbl = {06282096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0028-0/}
}
TY  - JOUR
AU  - Černý, Robert
TI  - Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth
JO  - Applications of Mathematics
PY  - 2013
SP  - 555
EP  - 593
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0028-0/
DO  - 10.1007/s10492-013-0028-0
LA  - en
ID  - 10_1007_s10492_013_0028_0
ER  - 
%0 Journal Article
%A Černý, Robert
%T Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth
%J Applications of Mathematics
%D 2013
%P 555-593
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0028-0/
%R 10.1007/s10492-013-0028-0
%G en
%F 10_1007_s10492_013_0028_0
Černý, Robert. Generalized $n$-Laplacian: semilinear Neumann problem with the critical growth. Applications of Mathematics, Tome 58 (2013) no. 5, pp. 555-593. doi : 10.1007/s10492-013-0028-0. http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0028-0/

Cité par Sources :