Regularity results for a class of obstacle problems in Heisenberg groups
Applications of Mathematics, Tome 58 (2013) no. 5, pp. 531-554
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study regularity results for solutions $u\in H W^{1,p}(\Omega )$ to the obstacle problem $$ \int _{\Omega } \mathcal {A}(x, \nabla _{\mathbb H} u)\nabla _{\mathbb H}(v-u) {\rm d} x \geq 0 \quad \forall v\in \mathcal K_{\psi ,u}(\Omega ) $$ such that $u\geq \psi $ a.e. in $\Omega $, where $\mathcal K_{\psi ,u}(\Omega )= \{v\in HW^{1,p}(\Omega )\colon v-u\in HW_{0}^{1,p}(\Omega ) v\geq \psi \text {\rm a.e. in} \Omega \}$, in Heisenberg groups $\mathbb H^n$. In particular, we obtain weak differentiability in the $T$-direction and horizontal estimates of Calderon-Zygmund type, i.e. $$ \begin{aligned}d T\psi \in HW^{1,p}_{\rm loc}(\Omega )\Rightarrow Tu\in L^p_{\rm loc}(\Omega ), |\nabla _{\mathbb H}\psi |^p\in L^{q}_{\rm loc}(\Omega )\Rightarrow |\nabla _{\mathbb H} u|^p \in L^q_{\rm loc}(\Omega ), \end{aligned}d $$ where $21$.
We study regularity results for solutions $u\in H W^{1,p}(\Omega )$ to the obstacle problem $$ \int _{\Omega } \mathcal {A}(x, \nabla _{\mathbb H} u)\nabla _{\mathbb H}(v-u) {\rm d} x \geq 0 \quad \forall v\in \mathcal K_{\psi ,u}(\Omega ) $$ such that $u\geq \psi $ a.e. in $\Omega $, where $\mathcal K_{\psi ,u}(\Omega )= \{v\in HW^{1,p}(\Omega )\colon v-u\in HW_{0}^{1,p}(\Omega ) v\geq \psi \text {\rm a.e. in} \Omega \}$, in Heisenberg groups $\mathbb H^n$. In particular, we obtain weak differentiability in the $T$-direction and horizontal estimates of Calderon-Zygmund type, i.e. $$ \begin{aligned}d T\psi \in HW^{1,p}_{\rm loc}(\Omega )\Rightarrow Tu\in L^p_{\rm loc}(\Omega ), |\nabla _{\mathbb H}\psi |^p\in L^{q}_{\rm loc}(\Omega )\Rightarrow |\nabla _{\mathbb H} u|^p \in L^q_{\rm loc}(\Omega ), \end{aligned}d $$ where $2$, $q>1$.
DOI :
10.1007/s10492-013-0027-1
Classification :
35D30, 35J20
Keywords: obstacle problem; weak solution; regularity; Heisenberg group
Keywords: obstacle problem; weak solution; regularity; Heisenberg group
@article{10_1007_s10492_013_0027_1,
author = {Bigolin, Francesco},
title = {Regularity results for a class of obstacle problems in {Heisenberg} groups},
journal = {Applications of Mathematics},
pages = {531--554},
year = {2013},
volume = {58},
number = {5},
doi = {10.1007/s10492-013-0027-1},
mrnumber = {3104617},
zbl = {06282095},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0027-1/}
}
TY - JOUR AU - Bigolin, Francesco TI - Regularity results for a class of obstacle problems in Heisenberg groups JO - Applications of Mathematics PY - 2013 SP - 531 EP - 554 VL - 58 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0027-1/ DO - 10.1007/s10492-013-0027-1 LA - en ID - 10_1007_s10492_013_0027_1 ER -
%0 Journal Article %A Bigolin, Francesco %T Regularity results for a class of obstacle problems in Heisenberg groups %J Applications of Mathematics %D 2013 %P 531-554 %V 58 %N 5 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0027-1/ %R 10.1007/s10492-013-0027-1 %G en %F 10_1007_s10492_013_0027_1
Bigolin, Francesco. Regularity results for a class of obstacle problems in Heisenberg groups. Applications of Mathematics, Tome 58 (2013) no. 5, pp. 531-554. doi: 10.1007/s10492-013-0027-1
Cité par Sources :