On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms
Applications of Mathematics, Tome 58 (2013) no. 4, pp. 473-486
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We deal with several classes of integral transformations of the form $$ \label {generalformula} f(x)\rightarrow D\int _{\mathbb R_+^2} \frac 1u ({\rm e}^{-u\cosh (x+v)}+{\rm e}^{-u\cosh (x-v)}) h(u)f(v) {\rm d}u {\rm d} v, $$ where $D$ is an operator. In case $D$ is the identity operator, we obtain several operator properties on $L_p(\mathbb R_+)$ with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on $L_2(\mathbb R_+)$ and define the inversion formula. Further, for an other class of differential operators of finite order, we apply these transformations to solve a class of integro-differential problems of generalized convolution type.
We deal with several classes of integral transformations of the form $$ \label {generalformula} f(x)\rightarrow D\int _{\mathbb R_+^2} \frac 1u ({\rm e}^{-u\cosh (x+v)}+{\rm e}^{-u\cosh (x-v)}) h(u)f(v) {\rm d}u {\rm d} v, $$ where $D$ is an operator. In case $D$ is the identity operator, we obtain several operator properties on $L_p(\mathbb R_+)$ with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on $L_2(\mathbb R_+)$ and define the inversion formula. Further, for an other class of differential operators of finite order, we apply these transformations to solve a class of integro-differential problems of generalized convolution type.
DOI :
10.1007/s10492-013-0023-5
Classification :
33C10, 44A35, 45E10, 45J05, 47A30, 47B15
Keywords: convolution; Hölder inequality; Young's theorem; Watson's theorem; unitary; Fourier cosine; Kontorovich-Lebedev; transform; integro-differential equation
Keywords: convolution; Hölder inequality; Young's theorem; Watson's theorem; unitary; Fourier cosine; Kontorovich-Lebedev; transform; integro-differential equation
@article{10_1007_s10492_013_0023_5,
author = {Hong, Nguyen Thanh and Tuan, Trinh and Thao, Nguyen Xuan},
title = {On the {Fourier} {cosine{\textemdash}Kontorovich-Lebedev} generalized convolution transforms},
journal = {Applications of Mathematics},
pages = {473--486},
year = {2013},
volume = {58},
number = {4},
doi = {10.1007/s10492-013-0023-5},
mrnumber = {3083524},
zbl = {06221241},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0023-5/}
}
TY - JOUR AU - Hong, Nguyen Thanh AU - Tuan, Trinh AU - Thao, Nguyen Xuan TI - On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms JO - Applications of Mathematics PY - 2013 SP - 473 EP - 486 VL - 58 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0023-5/ DO - 10.1007/s10492-013-0023-5 LA - en ID - 10_1007_s10492_013_0023_5 ER -
%0 Journal Article %A Hong, Nguyen Thanh %A Tuan, Trinh %A Thao, Nguyen Xuan %T On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms %J Applications of Mathematics %D 2013 %P 473-486 %V 58 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0023-5/ %R 10.1007/s10492-013-0023-5 %G en %F 10_1007_s10492_013_0023_5
Hong, Nguyen Thanh; Tuan, Trinh; Thao, Nguyen Xuan. On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms. Applications of Mathematics, Tome 58 (2013) no. 4, pp. 473-486. doi: 10.1007/s10492-013-0023-5
Cité par Sources :