Uniqueness of limit cycles bounded by two invariant parabolas
Applications of Mathematics, Tome 57 (2012) no. 5, pp. 521-529.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider a class of cubic polynomial systems with two invariant parabolas and prove in the parameter space the existence of neighborhoods such that in one the system has a unique limit cycle and in the other the system has at most three limit cycles, bounded by the invariant parabolas.
DOI : 10.1007/s10492-012-0030-y
Classification : 34C05, 37C75, 37N25, 58F14, 58F21, 92B05, 92D25
Keywords: stability; limit cycles; center; bifurcation; Matlab
@article{10_1007_s10492_012_0030_y,
     author = {S\'aez, Eduardo and Sz\'ant\'o, Iv\'an},
     title = {Uniqueness of limit cycles bounded by two invariant parabolas},
     journal = {Applications of Mathematics},
     pages = {521--529},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2012},
     doi = {10.1007/s10492-012-0030-y},
     mrnumber = {2984617},
     zbl = {1262.92003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0030-y/}
}
TY  - JOUR
AU  - Sáez, Eduardo
AU  - Szántó, Iván
TI  - Uniqueness of limit cycles bounded by two invariant parabolas
JO  - Applications of Mathematics
PY  - 2012
SP  - 521
EP  - 529
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0030-y/
DO  - 10.1007/s10492-012-0030-y
LA  - en
ID  - 10_1007_s10492_012_0030_y
ER  - 
%0 Journal Article
%A Sáez, Eduardo
%A Szántó, Iván
%T Uniqueness of limit cycles bounded by two invariant parabolas
%J Applications of Mathematics
%D 2012
%P 521-529
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0030-y/
%R 10.1007/s10492-012-0030-y
%G en
%F 10_1007_s10492_012_0030_y
Sáez, Eduardo; Szántó, Iván. Uniqueness of limit cycles bounded by two invariant parabolas. Applications of Mathematics, Tome 57 (2012) no. 5, pp. 521-529. doi : 10.1007/s10492-012-0030-y. http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0030-y/

Cité par Sources :