A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions
Applications of Mathematics, Tome 57 (2012) no. 2, pp. 143-165.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential operator, and a variational approach is used in a certain non-direct way.
DOI : 10.1007/s10492-012-0010-2
Classification : 35B32, 35J50, 35J57, 35J87, 35J88, 35K57, 47J20
Keywords: reaction-diffusion system; unilateral condition; variational inequality; local bifurcation; variational approach; spatial patterns
@article{10_1007_s10492_012_0010_2,
     author = {Baltaev, Jamol I. and Ku\v{c}era, Milan and V\"ath, Martin},
     title = {A variational approach to bifurcation in reaction-diffusion systems with {Signorini} type boundary conditions},
     journal = {Applications of Mathematics},
     pages = {143--165},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2012},
     doi = {10.1007/s10492-012-0010-2},
     mrnumber = {2899729},
     zbl = {1249.35020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0010-2/}
}
TY  - JOUR
AU  - Baltaev, Jamol I.
AU  - Kučera, Milan
AU  - Väth, Martin
TI  - A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions
JO  - Applications of Mathematics
PY  - 2012
SP  - 143
EP  - 165
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0010-2/
DO  - 10.1007/s10492-012-0010-2
LA  - en
ID  - 10_1007_s10492_012_0010_2
ER  - 
%0 Journal Article
%A Baltaev, Jamol I.
%A Kučera, Milan
%A Väth, Martin
%T A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions
%J Applications of Mathematics
%D 2012
%P 143-165
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0010-2/
%R 10.1007/s10492-012-0010-2
%G en
%F 10_1007_s10492_012_0010_2
Baltaev, Jamol I.; Kučera, Milan; Väth, Martin. A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions. Applications of Mathematics, Tome 57 (2012) no. 2, pp. 143-165. doi : 10.1007/s10492-012-0010-2. http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0010-2/

Cité par Sources :