A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions
Applications of Mathematics, Tome 57 (2012) no. 2, pp. 143-165
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential operator, and a variational approach is used in a certain non-direct way.
DOI :
10.1007/s10492-012-0010-2
Classification :
35B32, 35J50, 35J57, 35J87, 35J88, 35K57, 47J20
Keywords: reaction-diffusion system; unilateral condition; variational inequality; local bifurcation; variational approach; spatial patterns
Keywords: reaction-diffusion system; unilateral condition; variational inequality; local bifurcation; variational approach; spatial patterns
@article{10_1007_s10492_012_0010_2,
author = {Baltaev, Jamol I. and Ku\v{c}era, Milan and V\"ath, Martin},
title = {A variational approach to bifurcation in reaction-diffusion systems with {Signorini} type boundary conditions},
journal = {Applications of Mathematics},
pages = {143--165},
publisher = {mathdoc},
volume = {57},
number = {2},
year = {2012},
doi = {10.1007/s10492-012-0010-2},
mrnumber = {2899729},
zbl = {1249.35020},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0010-2/}
}
TY - JOUR AU - Baltaev, Jamol I. AU - Kučera, Milan AU - Väth, Martin TI - A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions JO - Applications of Mathematics PY - 2012 SP - 143 EP - 165 VL - 57 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0010-2/ DO - 10.1007/s10492-012-0010-2 LA - en ID - 10_1007_s10492_012_0010_2 ER -
%0 Journal Article %A Baltaev, Jamol I. %A Kučera, Milan %A Väth, Martin %T A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions %J Applications of Mathematics %D 2012 %P 143-165 %V 57 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0010-2/ %R 10.1007/s10492-012-0010-2 %G en %F 10_1007_s10492_012_0010_2
Baltaev, Jamol I.; Kučera, Milan; Väth, Martin. A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions. Applications of Mathematics, Tome 57 (2012) no. 2, pp. 143-165. doi: 10.1007/s10492-012-0010-2
Cité par Sources :