Existence of weak solutions to doubly degenerate diffusion equations
Applications of Mathematics, Tome 57 (2012) no. 1, pp. 43-69.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove existence of weak solutions to doubly degenerate diffusion equations \begin {equation*} \dot {u} = \Delta _p u^{m-1} + f \quad (m,p \ge 2) \end {equation*} by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains $\Omega \subset \mathbb R^n$ with Dirichlet or Neumann boundary conditions. The function $f$ can be an inhomogeneity or a nonlinearity involving terms of the form $f(u)$ or $\div (F(u))$. In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given.
DOI : 10.1007/s10492-012-0004-0
Classification : 35A01, 35D30, 35K20, 35K59, 35K65, 35K92, 37L65
Keywords: $p$-Laplacian; doubly nonlinear evolution equation; weak solution
@article{10_1007_s10492_012_0004_0,
     author = {Matas, Ale\v{s} and Merker, Jochen},
     title = {Existence of weak solutions to doubly degenerate diffusion equations},
     journal = {Applications of Mathematics},
     pages = {43--69},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2012},
     doi = {10.1007/s10492-012-0004-0},
     mrnumber = {2891305},
     zbl = {1249.35194},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0004-0/}
}
TY  - JOUR
AU  - Matas, Aleš
AU  - Merker, Jochen
TI  - Existence of weak solutions to doubly degenerate diffusion equations
JO  - Applications of Mathematics
PY  - 2012
SP  - 43
EP  - 69
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0004-0/
DO  - 10.1007/s10492-012-0004-0
LA  - en
ID  - 10_1007_s10492_012_0004_0
ER  - 
%0 Journal Article
%A Matas, Aleš
%A Merker, Jochen
%T Existence of weak solutions to doubly degenerate diffusion equations
%J Applications of Mathematics
%D 2012
%P 43-69
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0004-0/
%R 10.1007/s10492-012-0004-0
%G en
%F 10_1007_s10492_012_0004_0
Matas, Aleš; Merker, Jochen. Existence of weak solutions to doubly degenerate diffusion equations. Applications of Mathematics, Tome 57 (2012) no. 1, pp. 43-69. doi : 10.1007/s10492-012-0004-0. http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0004-0/

Cité par Sources :