Existence of weak solutions to doubly degenerate diffusion equations
Applications of Mathematics, Tome 57 (2012) no. 1, pp. 43-69
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove existence of weak solutions to doubly degenerate diffusion equations \begin {equation*} \dot {u} = \Delta _p u^{m-1} + f \quad (m,p \ge 2) \end {equation*} by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains $\Omega \subset \mathbb R^n$ with Dirichlet or Neumann boundary conditions. The function $f$ can be an inhomogeneity or a nonlinearity involving terms of the form $f(u)$ or $\div (F(u))$. In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given.
We prove existence of weak solutions to doubly degenerate diffusion equations \begin {equation*} \dot {u} = \Delta _p u^{m-1} + f \quad (m,p \ge 2) \end {equation*} by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains $\Omega \subset \mathbb R^n$ with Dirichlet or Neumann boundary conditions. The function $f$ can be an inhomogeneity or a nonlinearity involving terms of the form $f(u)$ or $\div (F(u))$. In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given.
DOI :
10.1007/s10492-012-0004-0
Classification :
35A01, 35D30, 35K20, 35K59, 35K65, 35K92, 37L65
Keywords: $p$-Laplacian; doubly nonlinear evolution equation; weak solution
Keywords: $p$-Laplacian; doubly nonlinear evolution equation; weak solution
@article{10_1007_s10492_012_0004_0,
author = {Matas, Ale\v{s} and Merker, Jochen},
title = {Existence of weak solutions to doubly degenerate diffusion equations},
journal = {Applications of Mathematics},
pages = {43--69},
year = {2012},
volume = {57},
number = {1},
doi = {10.1007/s10492-012-0004-0},
mrnumber = {2891305},
zbl = {1249.35194},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0004-0/}
}
TY - JOUR AU - Matas, Aleš AU - Merker, Jochen TI - Existence of weak solutions to doubly degenerate diffusion equations JO - Applications of Mathematics PY - 2012 SP - 43 EP - 69 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0004-0/ DO - 10.1007/s10492-012-0004-0 LA - en ID - 10_1007_s10492_012_0004_0 ER -
%0 Journal Article %A Matas, Aleš %A Merker, Jochen %T Existence of weak solutions to doubly degenerate diffusion equations %J Applications of Mathematics %D 2012 %P 43-69 %V 57 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0004-0/ %R 10.1007/s10492-012-0004-0 %G en %F 10_1007_s10492_012_0004_0
Matas, Aleš; Merker, Jochen. Existence of weak solutions to doubly degenerate diffusion equations. Applications of Mathematics, Tome 57 (2012) no. 1, pp. 43-69. doi: 10.1007/s10492-012-0004-0
Cité par Sources :