Existence of solutions for a nonlinear discrete system involving the $p$-Laplacian
Applications of Mathematics, Tome 57 (2012) no. 1, pp. 11-30.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The existence of solutions for boundary value problems for a nonlinear discrete system involving the $p$-Laplacian is investigated. The approach is based on critical point theory.
DOI : 10.1007/s10492-012-0002-2
Classification : 35B38, 35K92, 37J45, 39A10, 39A12, 58E50, 70H05
Keywords: critical point theory; boundary value problems; discrete systems; $p$-Laplacian; variational method
@article{10_1007_s10492_012_0002_2,
     author = {Zhang, Xingyong and Tang, Xianhua},
     title = {Existence of solutions for a nonlinear discrete system involving the $p${-Laplacian}},
     journal = {Applications of Mathematics},
     pages = {11--30},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2012},
     doi = {10.1007/s10492-012-0002-2},
     mrnumber = {2891303},
     zbl = {1249.39009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0002-2/}
}
TY  - JOUR
AU  - Zhang, Xingyong
AU  - Tang, Xianhua
TI  - Existence of solutions for a nonlinear discrete system involving the $p$-Laplacian
JO  - Applications of Mathematics
PY  - 2012
SP  - 11
EP  - 30
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0002-2/
DO  - 10.1007/s10492-012-0002-2
LA  - en
ID  - 10_1007_s10492_012_0002_2
ER  - 
%0 Journal Article
%A Zhang, Xingyong
%A Tang, Xianhua
%T Existence of solutions for a nonlinear discrete system involving the $p$-Laplacian
%J Applications of Mathematics
%D 2012
%P 11-30
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0002-2/
%R 10.1007/s10492-012-0002-2
%G en
%F 10_1007_s10492_012_0002_2
Zhang, Xingyong; Tang, Xianhua. Existence of solutions for a nonlinear discrete system involving the $p$-Laplacian. Applications of Mathematics, Tome 57 (2012) no. 1, pp. 11-30. doi : 10.1007/s10492-012-0002-2. http://geodesic.mathdoc.fr/articles/10.1007/s10492-012-0002-2/

Cité par Sources :