A classical decision theoretic perspective on worst-case analysis
Applications of Mathematics, Tome 56 (2011) no. 5, pp. 499-509.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We examine worst-case analysis from the standpoint of classical Decision Theory. We elucidate how this analysis is expressed in the framework of Wald's famous Maximin paradigm for decision-making under strict uncertainty. We illustrate the subtlety required in modeling this paradigm by showing that information-gap's robustness model is in fact a Maximin model in disguise.
DOI : 10.1007/s10492-011-0028-x
Classification : 68T37, 90C47, 91A05, 91B06
Keywords: worst-case analysis; uncertainty; decision theory; maximin; robustness
@article{10_1007_s10492_011_0028_x,
     author = {Sniedovich, Moshe},
     title = {A classical decision theoretic perspective on worst-case analysis},
     journal = {Applications of Mathematics},
     pages = {499--509},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2011},
     doi = {10.1007/s10492-011-0028-x},
     mrnumber = {2852068},
     zbl = {1249.91023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0028-x/}
}
TY  - JOUR
AU  - Sniedovich, Moshe
TI  - A classical decision theoretic perspective on worst-case analysis
JO  - Applications of Mathematics
PY  - 2011
SP  - 499
EP  - 509
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0028-x/
DO  - 10.1007/s10492-011-0028-x
LA  - en
ID  - 10_1007_s10492_011_0028_x
ER  - 
%0 Journal Article
%A Sniedovich, Moshe
%T A classical decision theoretic perspective on worst-case analysis
%J Applications of Mathematics
%D 2011
%P 499-509
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0028-x/
%R 10.1007/s10492-011-0028-x
%G en
%F 10_1007_s10492_011_0028_x
Sniedovich, Moshe. A classical decision theoretic perspective on worst-case analysis. Applications of Mathematics, Tome 56 (2011) no. 5, pp. 499-509. doi : 10.1007/s10492-011-0028-x. http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0028-x/

Cité par Sources :