Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument
Applications of Mathematics, Tome 56 (2011) no. 3, pp. 253-264.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By using the coincidence degree theory, we study a type of $p$-Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of $T$-periodic solutions.
DOI : 10.1007/s10492-011-0015-2
Classification : 34B15, 34B20, 34B24, 34K13, 34K40, 47N20
Keywords: deviating argument; neutral; coincidence degree theory
@article{10_1007_s10492_011_0015_2,
     author = {Du, Bo and Hu, Xueping},
     title = {Periodic solutions to a $p${-Laplacian} neutral {Rayleigh} equation with deviating argument},
     journal = {Applications of Mathematics},
     pages = {253--264},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2011},
     doi = {10.1007/s10492-011-0015-2},
     mrnumber = {2800577},
     zbl = {1224.34226},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0015-2/}
}
TY  - JOUR
AU  - Du, Bo
AU  - Hu, Xueping
TI  - Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument
JO  - Applications of Mathematics
PY  - 2011
SP  - 253
EP  - 264
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0015-2/
DO  - 10.1007/s10492-011-0015-2
LA  - en
ID  - 10_1007_s10492_011_0015_2
ER  - 
%0 Journal Article
%A Du, Bo
%A Hu, Xueping
%T Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument
%J Applications of Mathematics
%D 2011
%P 253-264
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0015-2/
%R 10.1007/s10492-011-0015-2
%G en
%F 10_1007_s10492_011_0015_2
Du, Bo; Hu, Xueping. Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument. Applications of Mathematics, Tome 56 (2011) no. 3, pp. 253-264. doi : 10.1007/s10492-011-0015-2. http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0015-2/

Cité par Sources :