Remarks on the uniqueness of second order $\rm ODEs$
Applications of Mathematics, Tome 56 (2011) no. 1, pp. 161-172
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We are concerned with the uniqueness problem for solutions to the second order ODE of the form $x''+f(x,t)=0$, subject to appropriate initial conditions, under the sole assumption that $f$ is non-decreasing with respect to $x$, for each $t$ fixed. We show that there is non-uniqueness in general; on the other hand, several types of reasonable additional assumptions make the problem uniquely solvable. The interest in this problem comes, among other, from the study of oscillations of lumped parameter systems with implicit constitutive relations.
DOI :
10.1007/s10492-011-0014-3
Classification :
34A12, 34C10, 34M10
Keywords: second order ODEs; uniqueness of solutions; oscillations
Keywords: second order ODEs; uniqueness of solutions; oscillations
@article{10_1007_s10492_011_0014_3,
author = {Pra\v{z}\'ak, Dalibor},
title = {Remarks on the uniqueness of second order $\rm ODEs$},
journal = {Applications of Mathematics},
pages = {161--172},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2011},
doi = {10.1007/s10492-011-0014-3},
mrnumber = {2807431},
zbl = {1224.34008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0014-3/}
}
TY - JOUR AU - Pražák, Dalibor TI - Remarks on the uniqueness of second order $\rm ODEs$ JO - Applications of Mathematics PY - 2011 SP - 161 EP - 172 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0014-3/ DO - 10.1007/s10492-011-0014-3 LA - en ID - 10_1007_s10492_011_0014_3 ER -
Pražák, Dalibor. Remarks on the uniqueness of second order $\rm ODEs$. Applications of Mathematics, Tome 56 (2011) no. 1, pp. 161-172. doi: 10.1007/s10492-011-0014-3
Cité par Sources :