Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions
Applications of Mathematics, Tome 56 (2011) no. 1, pp. 137-160
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law $p(\varrho ,\vartheta ) \sim \varrho ^\gamma + \varrho \vartheta $ if $\gamma >1$ and $p(\varrho ,\vartheta ) \sim \varrho \ln ^\alpha (1+\varrho ) + \varrho \vartheta $ if $\gamma =1$, $\alpha >0$, depending on the model for the heat flux.
DOI :
10.1007/s10492-011-0013-4
Classification :
35A01, 35D30, 35Q30, 35Q35, 76N10
Keywords: steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz spaces; compensated compactness; renormalized solution
Keywords: steady compressible Navier-Stokes-Fourier system; weak solution; entropy inequality; Orlicz spaces; compensated compactness; renormalized solution
@article{10_1007_s10492_011_0013_4,
author = {Novotn\'y, Anton{\'\i}n and Pokorn\'y, Milan},
title = {Weak solutions for steady compressible {Navier-Stokes-Fourier} system in two space dimensions},
journal = {Applications of Mathematics},
pages = {137--160},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2011},
doi = {10.1007/s10492-011-0013-4},
mrnumber = {2807430},
zbl = {1224.76108},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0013-4/}
}
TY - JOUR AU - Novotný, Antonín AU - Pokorný, Milan TI - Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions JO - Applications of Mathematics PY - 2011 SP - 137 EP - 160 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0013-4/ DO - 10.1007/s10492-011-0013-4 LA - en ID - 10_1007_s10492_011_0013_4 ER -
%0 Journal Article %A Novotný, Antonín %A Pokorný, Milan %T Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions %J Applications of Mathematics %D 2011 %P 137-160 %V 56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0013-4/ %R 10.1007/s10492-011-0013-4 %G en %F 10_1007_s10492_011_0013_4
Novotný, Antonín; Pokorný, Milan. Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions. Applications of Mathematics, Tome 56 (2011) no. 1, pp. 137-160. doi: 10.1007/s10492-011-0013-4
Cité par Sources :