$L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes
Applications of Mathematics, Tome 56 (2011) no. 2, pp. 177-206
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An $L^2$-estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space.
An $L^2$-estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space.
DOI :
10.1007/s10492-011-0002-7
Classification :
35J25, 65D05, 65N15, 65N30, 65N50
Keywords: elliptic boundary value problem; a priori error estimates; interpolation of non-smooth functions; finite element error; non-convex domains; edge singularities; anisotropic mesh grading; Dirichlet and a Neumann boundary value problem
Keywords: elliptic boundary value problem; a priori error estimates; interpolation of non-smooth functions; finite element error; non-convex domains; edge singularities; anisotropic mesh grading; Dirichlet and a Neumann boundary value problem
@article{10_1007_s10492_011_0002_7,
author = {Apel, Thomas and Sirch, Dieter},
title = {$L^2$-error estimates for {Dirichlet} and {Neumann} problems on anisotropic finite element meshes},
journal = {Applications of Mathematics},
pages = {177--206},
year = {2011},
volume = {56},
number = {2},
doi = {10.1007/s10492-011-0002-7},
mrnumber = {2810243},
zbl = {1224.65252},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/}
}
TY - JOUR AU - Apel, Thomas AU - Sirch, Dieter TI - $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes JO - Applications of Mathematics PY - 2011 SP - 177 EP - 206 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/ DO - 10.1007/s10492-011-0002-7 LA - en ID - 10_1007_s10492_011_0002_7 ER -
%0 Journal Article %A Apel, Thomas %A Sirch, Dieter %T $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes %J Applications of Mathematics %D 2011 %P 177-206 %V 56 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/ %R 10.1007/s10492-011-0002-7 %G en %F 10_1007_s10492_011_0002_7
Apel, Thomas; Sirch, Dieter. $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes. Applications of Mathematics, Tome 56 (2011) no. 2, pp. 177-206. doi: 10.1007/s10492-011-0002-7
Cité par Sources :