Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_011_0002_7, author = {Apel, Thomas and Sirch, Dieter}, title = {$L^2$-error estimates for {Dirichlet} and {Neumann} problems on anisotropic finite element meshes}, journal = {Applications of Mathematics}, pages = {177--206}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2011}, doi = {10.1007/s10492-011-0002-7}, mrnumber = {2810243}, zbl = {1224.65252}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/} }
TY - JOUR AU - Apel, Thomas AU - Sirch, Dieter TI - $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes JO - Applications of Mathematics PY - 2011 SP - 177 EP - 206 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/ DO - 10.1007/s10492-011-0002-7 LA - en ID - 10_1007_s10492_011_0002_7 ER -
%0 Journal Article %A Apel, Thomas %A Sirch, Dieter %T $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes %J Applications of Mathematics %D 2011 %P 177-206 %V 56 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/ %R 10.1007/s10492-011-0002-7 %G en %F 10_1007_s10492_011_0002_7
Apel, Thomas; Sirch, Dieter. $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes. Applications of Mathematics, Tome 56 (2011) no. 2, pp. 177-206. doi : 10.1007/s10492-011-0002-7. http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/
Cité par Sources :