$L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes
Applications of Mathematics, Tome 56 (2011) no. 2, pp. 177-206.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An $L^2$-estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space.
DOI : 10.1007/s10492-011-0002-7
Classification : 35J25, 65D05, 65N15, 65N30, 65N50
Keywords: elliptic boundary value problem; a priori error estimates; interpolation of non-smooth functions; finite element error; non-convex domains; edge singularities; anisotropic mesh grading; Dirichlet and a Neumann boundary value problem
@article{10_1007_s10492_011_0002_7,
     author = {Apel, Thomas and Sirch, Dieter},
     title = {$L^2$-error estimates for {Dirichlet} and {Neumann} problems on anisotropic finite element meshes},
     journal = {Applications of Mathematics},
     pages = {177--206},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2011},
     doi = {10.1007/s10492-011-0002-7},
     mrnumber = {2810243},
     zbl = {1224.65252},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/}
}
TY  - JOUR
AU  - Apel, Thomas
AU  - Sirch, Dieter
TI  - $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes
JO  - Applications of Mathematics
PY  - 2011
SP  - 177
EP  - 206
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/
DO  - 10.1007/s10492-011-0002-7
LA  - en
ID  - 10_1007_s10492_011_0002_7
ER  - 
%0 Journal Article
%A Apel, Thomas
%A Sirch, Dieter
%T $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes
%J Applications of Mathematics
%D 2011
%P 177-206
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/
%R 10.1007/s10492-011-0002-7
%G en
%F 10_1007_s10492_011_0002_7
Apel, Thomas; Sirch, Dieter. $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes. Applications of Mathematics, Tome 56 (2011) no. 2, pp. 177-206. doi : 10.1007/s10492-011-0002-7. http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0002-7/

Cité par Sources :