Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_010_0015_7, author = {Wang, Libo and Ge, Weigao and Pei, Minghe}, title = {Infinitely many solutions of a second-order $p${-Laplacian} problem with impulsive condition}, journal = {Applications of Mathematics}, pages = {405--418}, publisher = {mathdoc}, volume = {55}, number = {5}, year = {2010}, doi = {10.1007/s10492-010-0015-7}, mrnumber = {2737720}, zbl = {1224.34091}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0015-7/} }
TY - JOUR AU - Wang, Libo AU - Ge, Weigao AU - Pei, Minghe TI - Infinitely many solutions of a second-order $p$-Laplacian problem with impulsive condition JO - Applications of Mathematics PY - 2010 SP - 405 EP - 418 VL - 55 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0015-7/ DO - 10.1007/s10492-010-0015-7 LA - en ID - 10_1007_s10492_010_0015_7 ER -
%0 Journal Article %A Wang, Libo %A Ge, Weigao %A Pei, Minghe %T Infinitely many solutions of a second-order $p$-Laplacian problem with impulsive condition %J Applications of Mathematics %D 2010 %P 405-418 %V 55 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0015-7/ %R 10.1007/s10492-010-0015-7 %G en %F 10_1007_s10492_010_0015_7
Wang, Libo; Ge, Weigao; Pei, Minghe. Infinitely many solutions of a second-order $p$-Laplacian problem with impulsive condition. Applications of Mathematics, Tome 55 (2010) no. 5, pp. 405-418. doi : 10.1007/s10492-010-0015-7. http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0015-7/
Cité par Sources :