Stochastic homogenization of a class of monotone eigenvalue problems
Applications of Mathematics, Tome 55 (2010) no. 5, pp. 385-404
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form $$ -\div \Bigl (a\Bigl (T_1\Bigl (\frac x{\varepsilon _1}\Bigr )\omega _1,T_2 \Bigl (\frac x{\varepsilon _2}\Bigr )\omega _2, \nabla u^\omega _{\varepsilon }\Bigr )\Bigr ) =\lambda _\varepsilon ^\omega \mathcal C(u^\omega _{\varepsilon }). $$ It is shown, under certain structure assumptions on the random map $a(\omega _1,\omega _2,\xi )$, that the sequence $\{\lambda _\varepsilon ^{\omega ,k},u^{\omega ,k}_\varepsilon \}$ of $k$th eigenpairs converges to the $k$th eigenpair $\{\lambda ^k,u^k\}$ of the homogenized eigenvalue problem $$ - {\rm div}( b(\nabla u) ) = \lambda {\overline {\mathcal C}}(u). $$ For the case of $p$-Laplacian type maps we characterize $b$ explicitly.
Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form $$ -\div \Bigl (a\Bigl (T_1\Bigl (\frac x{\varepsilon _1}\Bigr )\omega _1,T_2 \Bigl (\frac x{\varepsilon _2}\Bigr )\omega _2, \nabla u^\omega _{\varepsilon }\Bigr )\Bigr ) =\lambda _\varepsilon ^\omega \mathcal C(u^\omega _{\varepsilon }). $$ It is shown, under certain structure assumptions on the random map $a(\omega _1,\omega _2,\xi )$, that the sequence $\{\lambda _\varepsilon ^{\omega ,k},u^{\omega ,k}_\varepsilon \}$ of $k$th eigenpairs converges to the $k$th eigenpair $\{\lambda ^k,u^k\}$ of the homogenized eigenvalue problem $$ - {\rm div}( b(\nabla u) ) = \lambda {\overline {\mathcal C}}(u). $$ For the case of $p$-Laplacian type maps we characterize $b$ explicitly.
DOI :
10.1007/s10492-010-0014-8
Classification :
35B27, 35B40, 35J25, 35J62, 35J92, 35P30
Keywords: stochastic; homogenization; eigenvalue
Keywords: stochastic; homogenization; eigenvalue
@article{10_1007_s10492_010_0014_8,
author = {Svanstedt, Nils},
title = {Stochastic homogenization of a class of monotone eigenvalue problems},
journal = {Applications of Mathematics},
pages = {385--404},
year = {2010},
volume = {55},
number = {5},
doi = {10.1007/s10492-010-0014-8},
mrnumber = {2737719},
zbl = {1224.35026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0014-8/}
}
TY - JOUR AU - Svanstedt, Nils TI - Stochastic homogenization of a class of monotone eigenvalue problems JO - Applications of Mathematics PY - 2010 SP - 385 EP - 404 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0014-8/ DO - 10.1007/s10492-010-0014-8 LA - en ID - 10_1007_s10492_010_0014_8 ER -
%0 Journal Article %A Svanstedt, Nils %T Stochastic homogenization of a class of monotone eigenvalue problems %J Applications of Mathematics %D 2010 %P 385-404 %V 55 %N 5 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0014-8/ %R 10.1007/s10492-010-0014-8 %G en %F 10_1007_s10492_010_0014_8
Svanstedt, Nils. Stochastic homogenization of a class of monotone eigenvalue problems. Applications of Mathematics, Tome 55 (2010) no. 5, pp. 385-404. doi: 10.1007/s10492-010-0014-8
Cité par Sources :