Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation
Applications of Mathematics, Tome 55 (2010) no. 3, pp. 197-219.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an $N$-body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is ``exact'' as $N$ tends to infinity.
DOI : 10.1007/s10492-010-0008-6
Classification : 81Q05, 81V05, 81V35, 81V70
Keywords: time-dependent Hartree-Fock equation; nuclear matter
@article{10_1007_s10492_010_0008_6,
     author = {Ducomet, Bernard},
     title = {Weak interaction limit for nuclear matter and the time-dependent {Hartree-Fock} equation},
     journal = {Applications of Mathematics},
     pages = {197--219},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2010},
     doi = {10.1007/s10492-010-0008-6},
     mrnumber = {2657834},
     zbl = {1224.81018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0008-6/}
}
TY  - JOUR
AU  - Ducomet, Bernard
TI  - Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation
JO  - Applications of Mathematics
PY  - 2010
SP  - 197
EP  - 219
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0008-6/
DO  - 10.1007/s10492-010-0008-6
LA  - en
ID  - 10_1007_s10492_010_0008_6
ER  - 
%0 Journal Article
%A Ducomet, Bernard
%T Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation
%J Applications of Mathematics
%D 2010
%P 197-219
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0008-6/
%R 10.1007/s10492-010-0008-6
%G en
%F 10_1007_s10492_010_0008_6
Ducomet, Bernard. Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation. Applications of Mathematics, Tome 55 (2010) no. 3, pp. 197-219. doi : 10.1007/s10492-010-0008-6. http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0008-6/

Cité par Sources :