Locally Lipschitz vector optimization with inequality and equality constraints
Applications of Mathematics, Tome 55 (2010) no. 1, pp. 77-88.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The present paper studies the following constrained vector optimization problem: $\min _Cf(x)$, $g(x)\in -K$, $h(x)=0$, where $f\colon\Bbb R^n\to \Bbb R^m$, $g\colon\Bbb R^n\to \Bbb R^p$ are locally Lipschitz functions, $h\colon\Bbb R^n\to \Bbb R^q$ is $C^1$ function, and $C\subset \Bbb R^m$ and $K\subset \Bbb R^p$ are closed convex cones. Two types of solutions are important for the consideration, namely $w$-minimizers (weakly efficient points) and $i$-minimizers (isolated minimizers of order 1). In terms of the Dini directional derivative first-order necessary conditions for a point $x^0$ to be a $w$-minimizer and first-order sufficient conditions for $x^0$ to be an $i$-minimizer are obtained. Their effectiveness is illustrated on an example. A comparison with some known results is done.
DOI : 10.1007/s10492-010-0003-y
Classification : 49J52, 90C29, 90C30, 90C46
Keywords: vector optimization; locally Lipschitz optimization; Dini derivatives; optimality conditions
@article{10_1007_s10492_010_0003_y,
     author = {Ginchev, Ivan and Guerraggio, Angelo and Rocca, Matteo},
     title = {Locally {Lipschitz} vector optimization with inequality and equality constraints},
     journal = {Applications of Mathematics},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2010},
     doi = {10.1007/s10492-010-0003-y},
     mrnumber = {2585562},
     zbl = {1224.90154},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0003-y/}
}
TY  - JOUR
AU  - Ginchev, Ivan
AU  - Guerraggio, Angelo
AU  - Rocca, Matteo
TI  - Locally Lipschitz vector optimization with inequality and equality constraints
JO  - Applications of Mathematics
PY  - 2010
SP  - 77
EP  - 88
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0003-y/
DO  - 10.1007/s10492-010-0003-y
LA  - en
ID  - 10_1007_s10492_010_0003_y
ER  - 
%0 Journal Article
%A Ginchev, Ivan
%A Guerraggio, Angelo
%A Rocca, Matteo
%T Locally Lipschitz vector optimization with inequality and equality constraints
%J Applications of Mathematics
%D 2010
%P 77-88
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0003-y/
%R 10.1007/s10492-010-0003-y
%G en
%F 10_1007_s10492_010_0003_y
Ginchev, Ivan; Guerraggio, Angelo; Rocca, Matteo. Locally Lipschitz vector optimization with inequality and equality constraints. Applications of Mathematics, Tome 55 (2010) no. 1, pp. 77-88. doi : 10.1007/s10492-010-0003-y. http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0003-y/

Cité par Sources :