Global solution to a generalized nonisothermal Ginzburg-Landau system
Applications of Mathematics, Tome 55 (2010) no. 1, pp. 1-46.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, {\it 5} (2005), 753--768. The existence of solutions to a related Neumann-Robin problem is established in an $N \le 3$-dimensional space setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations estimates and results on renormalized solutions for a parabolic equation with $L^1$ data are used to handle a suitable a priori estimate which allows to extend our local solutions to the whole time interval. The uniqueness result is justified by proper contracting estimates.
DOI : 10.1007/s10492-010-0001-0
Classification : 35K55, 35Q56, 80A22
Keywords: nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence and uniqueness results; renormalized solutions; Moser iterations
@article{10_1007_s10492_010_0001_0,
     author = {Fterich, Nesrine},
     title = {Global solution to a generalized nonisothermal {Ginzburg-Landau} system},
     journal = {Applications of Mathematics},
     pages = {1--46},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2010},
     doi = {10.1007/s10492-010-0001-0},
     mrnumber = {2585560},
     zbl = {1224.35388},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0001-0/}
}
TY  - JOUR
AU  - Fterich, Nesrine
TI  - Global solution to a generalized nonisothermal Ginzburg-Landau system
JO  - Applications of Mathematics
PY  - 2010
SP  - 1
EP  - 46
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0001-0/
DO  - 10.1007/s10492-010-0001-0
LA  - en
ID  - 10_1007_s10492_010_0001_0
ER  - 
%0 Journal Article
%A Fterich, Nesrine
%T Global solution to a generalized nonisothermal Ginzburg-Landau system
%J Applications of Mathematics
%D 2010
%P 1-46
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0001-0/
%R 10.1007/s10492-010-0001-0
%G en
%F 10_1007_s10492_010_0001_0
Fterich, Nesrine. Global solution to a generalized nonisothermal Ginzburg-Landau system. Applications of Mathematics, Tome 55 (2010) no. 1, pp. 1-46. doi : 10.1007/s10492-010-0001-0. http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0001-0/

Cité par Sources :