A globally convergent non-interior point algorithm with full Newton step for second-order cone programming
Applications of Mathematics, Tome 54 (2009) no. 5, pp. 447-464.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A non-interior point algorithm based on projection for second-order cone programming problems is proposed and analyzed. The main idea of the algorithm is that we cast the complementary equation in the primal-dual optimality conditions as a projection equation. By using this reformulation, we only need to solve a system of linear equations with the same coefficient matrix and compute two simple projections at each iteration, without performing any line search. This algorithm can start from an arbitrary point, and does not require the row vectors of $A$ to be linearly independent. We prove that our algorithm is globally convergent under weak conditions. Preliminary numerical results demonstrate the effectiveness of our algorithm.
DOI : 10.1007/s10492-009-0029-1
Classification : 65K05, 65Y20, 90C25, 90C30, 90C51
Keywords: non-interior point algorithm; second-order cone programming; Jordan product; optimality condition; central path
@article{10_1007_s10492_009_0029_1,
     author = {Fang, Liang and He, Guoping and Sun, Li},
     title = {A globally convergent non-interior point algorithm with full {Newton} step for second-order cone programming},
     journal = {Applications of Mathematics},
     pages = {447--464},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {2009},
     doi = {10.1007/s10492-009-0029-1},
     mrnumber = {2545411},
     zbl = {1212.90299},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0029-1/}
}
TY  - JOUR
AU  - Fang, Liang
AU  - He, Guoping
AU  - Sun, Li
TI  - A globally convergent non-interior point algorithm with full Newton step for second-order cone programming
JO  - Applications of Mathematics
PY  - 2009
SP  - 447
EP  - 464
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0029-1/
DO  - 10.1007/s10492-009-0029-1
LA  - en
ID  - 10_1007_s10492_009_0029_1
ER  - 
%0 Journal Article
%A Fang, Liang
%A He, Guoping
%A Sun, Li
%T A globally convergent non-interior point algorithm with full Newton step for second-order cone programming
%J Applications of Mathematics
%D 2009
%P 447-464
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0029-1/
%R 10.1007/s10492-009-0029-1
%G en
%F 10_1007_s10492_009_0029_1
Fang, Liang; He, Guoping; Sun, Li. A globally convergent non-interior point algorithm with full Newton step for second-order cone programming. Applications of Mathematics, Tome 54 (2009) no. 5, pp. 447-464. doi : 10.1007/s10492-009-0029-1. http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0029-1/

Cité par Sources :