Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_009_0029_1, author = {Fang, Liang and He, Guoping and Sun, Li}, title = {A globally convergent non-interior point algorithm with full {Newton} step for second-order cone programming}, journal = {Applications of Mathematics}, pages = {447--464}, publisher = {mathdoc}, volume = {54}, number = {5}, year = {2009}, doi = {10.1007/s10492-009-0029-1}, mrnumber = {2545411}, zbl = {1212.90299}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0029-1/} }
TY - JOUR AU - Fang, Liang AU - He, Guoping AU - Sun, Li TI - A globally convergent non-interior point algorithm with full Newton step for second-order cone programming JO - Applications of Mathematics PY - 2009 SP - 447 EP - 464 VL - 54 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0029-1/ DO - 10.1007/s10492-009-0029-1 LA - en ID - 10_1007_s10492_009_0029_1 ER -
%0 Journal Article %A Fang, Liang %A He, Guoping %A Sun, Li %T A globally convergent non-interior point algorithm with full Newton step for second-order cone programming %J Applications of Mathematics %D 2009 %P 447-464 %V 54 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0029-1/ %R 10.1007/s10492-009-0029-1 %G en %F 10_1007_s10492_009_0029_1
Fang, Liang; He, Guoping; Sun, Li. A globally convergent non-interior point algorithm with full Newton step for second-order cone programming. Applications of Mathematics, Tome 54 (2009) no. 5, pp. 447-464. doi : 10.1007/s10492-009-0029-1. http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0029-1/
Cité par Sources :