A parametrized Newton method for nonsmooth equations with finitely many maximum functions
Applications of Mathematics, Tome 54 (2009) no. 5, pp. 381-390.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we propose a parametrized Newton method for nonsmooth equations with finitely many maximum functions. The convergence result of this method is proved and numerical experiments are listed.
DOI : 10.1007/s10492-009-0025-5
Classification : 65H10, 90C30
Keywords: nonsmooth equations; Newton method; convergence; numerical examples
@article{10_1007_s10492_009_0025_5,
     author = {Du, Shou-qiang and Gao, Yan},
     title = {A parametrized {Newton} method for nonsmooth equations with finitely many maximum functions},
     journal = {Applications of Mathematics},
     pages = {381--390},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {2009},
     doi = {10.1007/s10492-009-0025-5},
     mrnumber = {2545407},
     zbl = {1212.65203},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0025-5/}
}
TY  - JOUR
AU  - Du, Shou-qiang
AU  - Gao, Yan
TI  - A parametrized Newton method for nonsmooth equations with finitely many maximum functions
JO  - Applications of Mathematics
PY  - 2009
SP  - 381
EP  - 390
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0025-5/
DO  - 10.1007/s10492-009-0025-5
LA  - en
ID  - 10_1007_s10492_009_0025_5
ER  - 
%0 Journal Article
%A Du, Shou-qiang
%A Gao, Yan
%T A parametrized Newton method for nonsmooth equations with finitely many maximum functions
%J Applications of Mathematics
%D 2009
%P 381-390
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0025-5/
%R 10.1007/s10492-009-0025-5
%G en
%F 10_1007_s10492_009_0025_5
Du, Shou-qiang; Gao, Yan. A parametrized Newton method for nonsmooth equations with finitely many maximum functions. Applications of Mathematics, Tome 54 (2009) no. 5, pp. 381-390. doi : 10.1007/s10492-009-0025-5. http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0025-5/

Cité par Sources :