Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems
Applications of Mathematics, Tome 54 (2009) no. 3, pp. 251-266.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Natural superconvergence of the least-squares finite element method is surveyed for the one- and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method.
DOI : 10.1007/s10492-009-0016-6
Classification : 35J05, 65N12, 65N30
Keywords: least-squares finite element method; mixed finite element method; natural superconvergence; Raviart-Thomas element; Poisson equation; Lagrange elements; triangular and rectangular meshes; numerical experiments; Galerkin method
@article{10_1007_s10492_009_0016_6,
     author = {Lin, Runchang and Zhang, Zhimin},
     title = {Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems},
     journal = {Applications of Mathematics},
     pages = {251--266},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2009},
     doi = {10.1007/s10492-009-0016-6},
     mrnumber = {2530542},
     zbl = {1212.65419},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0016-6/}
}
TY  - JOUR
AU  - Lin, Runchang
AU  - Zhang, Zhimin
TI  - Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems
JO  - Applications of Mathematics
PY  - 2009
SP  - 251
EP  - 266
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0016-6/
DO  - 10.1007/s10492-009-0016-6
LA  - en
ID  - 10_1007_s10492_009_0016_6
ER  - 
%0 Journal Article
%A Lin, Runchang
%A Zhang, Zhimin
%T Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems
%J Applications of Mathematics
%D 2009
%P 251-266
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0016-6/
%R 10.1007/s10492-009-0016-6
%G en
%F 10_1007_s10492_009_0016_6
Lin, Runchang; Zhang, Zhimin. Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems. Applications of Mathematics, Tome 54 (2009) no. 3, pp. 251-266. doi : 10.1007/s10492-009-0016-6. http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0016-6/

Cité par Sources :