Superconvergence estimates of finite element methods for American options
Applications of Mathematics, Tome 54 (2009) no. 3, pp. 181-202
In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. {\it 39} (2001), 834--857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation postprocessing analysis technique, we present sharp $L^2$-, $L^{\infty }$-norm error estimates and an $H^1$-norm superconvergence estimate for this finite element method. As a by-product, the global superconvergence result can be used to generate an efficient a posteriori error estimator.
In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. {\it 39} (2001), 834--857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation postprocessing analysis technique, we present sharp $L^2$-, $L^{\infty }$-norm error estimates and an $H^1$-norm superconvergence estimate for this finite element method. As a by-product, the global superconvergence result can be used to generate an efficient a posteriori error estimator.
DOI :
10.1007/s10492-009-0012-x
Classification :
65K10, 65K15, 65M12, 65M60, 90A09, 91G10, 91G20, 91G60
Keywords: American options; variational inequality; finite element methods; optimal and superconvergent estimates; interpolation postprocessing; a posteriori error estimators
Keywords: American options; variational inequality; finite element methods; optimal and superconvergent estimates; interpolation postprocessing; a posteriori error estimators
@article{10_1007_s10492_009_0012_x,
author = {Lin, Qun and Liu, Tang and Zhang, Shuhua},
title = {Superconvergence estimates of finite element methods for {American} options},
journal = {Applications of Mathematics},
pages = {181--202},
year = {2009},
volume = {54},
number = {3},
doi = {10.1007/s10492-009-0012-x},
mrnumber = {2530538},
zbl = {1212.65252},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0012-x/}
}
TY - JOUR AU - Lin, Qun AU - Liu, Tang AU - Zhang, Shuhua TI - Superconvergence estimates of finite element methods for American options JO - Applications of Mathematics PY - 2009 SP - 181 EP - 202 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0012-x/ DO - 10.1007/s10492-009-0012-x LA - en ID - 10_1007_s10492_009_0012_x ER -
%0 Journal Article %A Lin, Qun %A Liu, Tang %A Zhang, Shuhua %T Superconvergence estimates of finite element methods for American options %J Applications of Mathematics %D 2009 %P 181-202 %V 54 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0012-x/ %R 10.1007/s10492-009-0012-x %G en %F 10_1007_s10492_009_0012_x
Lin, Qun; Liu, Tang; Zhang, Shuhua. Superconvergence estimates of finite element methods for American options. Applications of Mathematics, Tome 54 (2009) no. 3, pp. 181-202. doi: 10.1007/s10492-009-0012-x
Cité par Sources :