Uniqueness of weak solutions of the Navier-Stokes equations
Applications of Mathematics, Tome 53 (2008) no. 6, pp. 561-582.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Consider the Navier-Stokes equation with the initial data $a\in L_{\sigma }^2( \Bbb R^d) $. Let $u$ and $v$ be two weak solutions with the same initial value $a$. If $u$ satisfies the usual energy inequality and if $\nabla v\in L^2(( 0,T) ;\dot X _1(\Bbb R^d)^d)$ where $\dot X_1(\Bbb R^d)$ is the multiplier space, then we have $u=v$.
DOI : 10.1007/s10492-008-0042-9
Classification : 35D30, 35Q30, 76D03, 76D05
Keywords: Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space
@article{10_1007_s10492_008_0042_9,
     author = {Gala, Sadek},
     title = {Uniqueness of weak solutions of the {Navier-Stokes} equations},
     journal = {Applications of Mathematics},
     pages = {561--582},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2008},
     doi = {10.1007/s10492-008-0042-9},
     mrnumber = {2469066},
     zbl = {1199.35274},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0042-9/}
}
TY  - JOUR
AU  - Gala, Sadek
TI  - Uniqueness of weak solutions of the Navier-Stokes equations
JO  - Applications of Mathematics
PY  - 2008
SP  - 561
EP  - 582
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0042-9/
DO  - 10.1007/s10492-008-0042-9
LA  - en
ID  - 10_1007_s10492_008_0042_9
ER  - 
%0 Journal Article
%A Gala, Sadek
%T Uniqueness of weak solutions of the Navier-Stokes equations
%J Applications of Mathematics
%D 2008
%P 561-582
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0042-9/
%R 10.1007/s10492-008-0042-9
%G en
%F 10_1007_s10492_008_0042_9
Gala, Sadek. Uniqueness of weak solutions of the Navier-Stokes equations. Applications of Mathematics, Tome 53 (2008) no. 6, pp. 561-582. doi : 10.1007/s10492-008-0042-9. http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0042-9/

Cité par Sources :