Large time behavior of solutions to a class of doubly nonlinear parabolic equations
Applications of Mathematics, Tome 53 (2008) no. 6, pp. 521-533.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the large time asymptotic behavior of solutions of the doubly degenerate parabolic equation $u_t=\mathop{{\rm div}} (u^{m-1}|Du|^{p-2}Du)-u^q$ with an initial condition $u(x,0)=u_0(x)$. Here the exponents $m$, $p$ and $q$ satisfy $m+p\geq 3$, $p>1$ and $q>m+p-2$.
DOI : 10.1007/s10492-008-0039-4
Classification : 35B40, 35K15, 35K55, 35K65
Keywords: degenerate parabolic equation; large time asymptotic behavior
@article{10_1007_s10492_008_0039_4,
     author = {Zhan, Huashui},
     title = {Large time behavior of solutions to a class of doubly nonlinear parabolic equations},
     journal = {Applications of Mathematics},
     pages = {521--533},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2008},
     doi = {10.1007/s10492-008-0039-4},
     mrnumber = {2469063},
     zbl = {1199.35188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0039-4/}
}
TY  - JOUR
AU  - Zhan, Huashui
TI  - Large time behavior of solutions to a class of doubly nonlinear parabolic equations
JO  - Applications of Mathematics
PY  - 2008
SP  - 521
EP  - 533
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0039-4/
DO  - 10.1007/s10492-008-0039-4
LA  - en
ID  - 10_1007_s10492_008_0039_4
ER  - 
%0 Journal Article
%A Zhan, Huashui
%T Large time behavior of solutions to a class of doubly nonlinear parabolic equations
%J Applications of Mathematics
%D 2008
%P 521-533
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0039-4/
%R 10.1007/s10492-008-0039-4
%G en
%F 10_1007_s10492_008_0039_4
Zhan, Huashui. Large time behavior of solutions to a class of doubly nonlinear parabolic equations. Applications of Mathematics, Tome 53 (2008) no. 6, pp. 521-533. doi : 10.1007/s10492-008-0039-4. http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0039-4/

Cité par Sources :