Remarks on optimum kernels and optimum boundary kernels
Applications of Mathematics, Tome 53 (2008) no. 4, pp. 305-317
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Kernel smoothers belong to the most popular nonparametric functional estimates used for describing data structure. They can be applied to the fix design regression model as well as to the random design regression model. The main idea of this paper is to present a construction of the optimum kernel and optimum boundary kernel by means of the Gegenbauer and Legendre polynomials.
Kernel smoothers belong to the most popular nonparametric functional estimates used for describing data structure. They can be applied to the fix design regression model as well as to the random design regression model. The main idea of this paper is to present a construction of the optimum kernel and optimum boundary kernel by means of the Gegenbauer and Legendre polynomials.
DOI :
10.1007/s10492-008-0028-7
Classification :
62G05, 62G07, 62G08
Keywords: kernel; optimum kernel; optimum boundary kernel
Keywords: kernel; optimum kernel; optimum boundary kernel
@article{10_1007_s10492_008_0028_7,
author = {Pom\v{e}nkov\'a, Jitka},
title = {Remarks on optimum kernels and optimum boundary kernels},
journal = {Applications of Mathematics},
pages = {305--317},
year = {2008},
volume = {53},
number = {4},
doi = {10.1007/s10492-008-0028-7},
mrnumber = {2433724},
zbl = {1194.62039},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0028-7/}
}
TY - JOUR AU - Poměnková, Jitka TI - Remarks on optimum kernels and optimum boundary kernels JO - Applications of Mathematics PY - 2008 SP - 305 EP - 317 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0028-7/ DO - 10.1007/s10492-008-0028-7 LA - en ID - 10_1007_s10492_008_0028_7 ER -
Poměnková, Jitka. Remarks on optimum kernels and optimum boundary kernels. Applications of Mathematics, Tome 53 (2008) no. 4, pp. 305-317. doi: 10.1007/s10492-008-0028-7
Cité par Sources :