Multiscale stochastic homogenization of convection-diffusion equations
Applications of Mathematics, Tome 53 (2008) no. 2, pp. 143-155.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form ${\partial u^\omega _{\varepsilon }}/{\partial t} +{1}/{\epsilon _3}\,\mathcal C\bigl (T_3({x}/{\varepsilon _3}) \omega _3\bigr )\cdot \nabla u^\omega _{\varepsilon }- \div \bigl ( \alpha \bigl (T_1({x}/{\varepsilon _1})\omega _1, T_2({x}/{\varepsilon _2})\omega _2 ,t\bigr ) \nabla u^\omega _{\varepsilon }\bigr )=f$. It is shown, under certain structure assumptions on the random vector field ${\mathcal C}(\omega _3)$ and the random map $\alpha (\omega _1,\omega _2,t)$, that the sequence $\lbrace u^\omega _\epsilon \rbrace $ of solutions converges in the sense of G-convergence of parabolic operators to the solution $u$ of the homogenized problem ${\partial u}/{\partial t} - \div ( \mathcal B(t)\nabla u ) = f$.
DOI : 10.1007/s10492-008-0017-x
Classification : 35B27, 35B40, 35K57, 60H15, 76M35, 76M50
Keywords: multiscale; stochastic; homogenization; convection-diffusion
@article{10_1007_s10492_008_0017_x,
     author = {Svanstedt, Nils},
     title = {Multiscale stochastic homogenization of convection-diffusion equations},
     journal = {Applications of Mathematics},
     pages = {143--155},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2008},
     doi = {10.1007/s10492-008-0017-x},
     mrnumber = {2399903},
     zbl = {1199.35017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0017-x/}
}
TY  - JOUR
AU  - Svanstedt, Nils
TI  - Multiscale stochastic homogenization of convection-diffusion equations
JO  - Applications of Mathematics
PY  - 2008
SP  - 143
EP  - 155
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0017-x/
DO  - 10.1007/s10492-008-0017-x
LA  - en
ID  - 10_1007_s10492_008_0017_x
ER  - 
%0 Journal Article
%A Svanstedt, Nils
%T Multiscale stochastic homogenization of convection-diffusion equations
%J Applications of Mathematics
%D 2008
%P 143-155
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0017-x/
%R 10.1007/s10492-008-0017-x
%G en
%F 10_1007_s10492_008_0017_x
Svanstedt, Nils. Multiscale stochastic homogenization of convection-diffusion equations. Applications of Mathematics, Tome 53 (2008) no. 2, pp. 143-155. doi : 10.1007/s10492-008-0017-x. http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0017-x/

Cité par Sources :