The scalar Oseen operator $-\Delta + {\partial}/{\partial x_1}$ in $\mathbb{R}^2$
Applications of Mathematics, Tome 53 (2008) no. 1, pp. 41-80.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in $L^{p}$ theory.
DOI : 10.1007/s10492-008-0012-2
Classification : 26D15, 35Q30, 35Q35, 76D03, 76D05
Keywords: Oseen equation; weighted Sobolev space; anisotropic weight
@article{10_1007_s10492_008_0012_2,
     author = {Amrouche, Ch\'erif and Bouzit, Hamid},
     title = {The scalar {Oseen} operator $-\Delta + {\partial}/{\partial x_1}$ in $\mathbb{R}^2$},
     journal = {Applications of Mathematics},
     pages = {41--80},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2008},
     doi = {10.1007/s10492-008-0012-2},
     mrnumber = {2382289},
     zbl = {1177.76080},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0012-2/}
}
TY  - JOUR
AU  - Amrouche, Chérif
AU  - Bouzit, Hamid
TI  - The scalar Oseen operator $-\Delta + {\partial}/{\partial x_1}$ in $\mathbb{R}^2$
JO  - Applications of Mathematics
PY  - 2008
SP  - 41
EP  - 80
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0012-2/
DO  - 10.1007/s10492-008-0012-2
LA  - en
ID  - 10_1007_s10492_008_0012_2
ER  - 
%0 Journal Article
%A Amrouche, Chérif
%A Bouzit, Hamid
%T The scalar Oseen operator $-\Delta + {\partial}/{\partial x_1}$ in $\mathbb{R}^2$
%J Applications of Mathematics
%D 2008
%P 41-80
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0012-2/
%R 10.1007/s10492-008-0012-2
%G en
%F 10_1007_s10492_008_0012_2
Amrouche, Chérif; Bouzit, Hamid. The scalar Oseen operator $-\Delta + {\partial}/{\partial x_1}$ in $\mathbb{R}^2$. Applications of Mathematics, Tome 53 (2008) no. 1, pp. 41-80. doi : 10.1007/s10492-008-0012-2. http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0012-2/

Cité par Sources :