An extension of Rothe's method to non-cylindrical domains
Applications of Mathematics, Tome 52 (2007) no. 5, pp. 365-389.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper Rothe’s classical method is extended so that it can be used to solve some linear parabolic boundary value problems in non-cylindrical domains. The corresponding existence and uniqueness theorems are proved and some further results and generalizations are discussed and applied.
DOI : 10.1007/s10492-007-0021-6
Classification : 35K20, 65M20, 65N40
Keywords: parabolic PDE; numerical method; time-discretization; method of lines; Rothe’s method
@article{10_1007_s10492_007_0021_6,
     author = {Kuliev, Komil and Persson, Lars-Erik},
     title = {An extension of {Rothe's} method to non-cylindrical domains},
     journal = {Applications of Mathematics},
     pages = {365--389},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2007},
     doi = {10.1007/s10492-007-0021-6},
     mrnumber = {2342595},
     zbl = {1164.65463},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0021-6/}
}
TY  - JOUR
AU  - Kuliev, Komil
AU  - Persson, Lars-Erik
TI  - An extension of Rothe's method to non-cylindrical domains
JO  - Applications of Mathematics
PY  - 2007
SP  - 365
EP  - 389
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0021-6/
DO  - 10.1007/s10492-007-0021-6
LA  - en
ID  - 10_1007_s10492_007_0021_6
ER  - 
%0 Journal Article
%A Kuliev, Komil
%A Persson, Lars-Erik
%T An extension of Rothe's method to non-cylindrical domains
%J Applications of Mathematics
%D 2007
%P 365-389
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0021-6/
%R 10.1007/s10492-007-0021-6
%G en
%F 10_1007_s10492_007_0021_6
Kuliev, Komil; Persson, Lars-Erik. An extension of Rothe's method to non-cylindrical domains. Applications of Mathematics, Tome 52 (2007) no. 5, pp. 365-389. doi : 10.1007/s10492-007-0021-6. http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0021-6/

Cité par Sources :