Regularity results for a class of obstacle problems
Applications of Mathematics, Tome 52 (2007) no. 2, pp. 137-170
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove some optimal regularity results for minimizers of the integral functional $\int f(x,u,Du)\mathrm{d}x$ belonging to the class $ K:=\lbrace u \in W^{1,p}(\Omega )\: u\ge \psi \rbrace $, where $\psi $ is a fixed function, under standard growth conditions of $p$-type, i.e. \[ L^{-1}|z|^p \le f(x,s,z) \le L(1+|z|^p). \]
DOI :
10.1007/s10492-007-0007-4
Classification :
35J85, 49J40, 49N60
Keywords: regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions
Keywords: regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions
@article{10_1007_s10492_007_0007_4,
author = {Eleuteri, Michela},
title = {Regularity results for a class of obstacle problems},
journal = {Applications of Mathematics},
pages = {137--170},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2007},
doi = {10.1007/s10492-007-0007-4},
mrnumber = {2305870},
zbl = {1164.49009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0007-4/}
}
TY - JOUR AU - Eleuteri, Michela TI - Regularity results for a class of obstacle problems JO - Applications of Mathematics PY - 2007 SP - 137 EP - 170 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0007-4/ DO - 10.1007/s10492-007-0007-4 LA - en ID - 10_1007_s10492_007_0007_4 ER -
Eleuteri, Michela. Regularity results for a class of obstacle problems. Applications of Mathematics, Tome 52 (2007) no. 2, pp. 137-170. doi: 10.1007/s10492-007-0007-4
Cité par Sources :