Regularity results for a class of obstacle problems
Applications of Mathematics, Tome 52 (2007) no. 2, pp. 137-170.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove some optimal regularity results for minimizers of the integral functional $\int f(x,u,Du)\mathrm{d}x$ belonging to the class $ K:=\lbrace u \in W^{1,p}(\Omega )\: u\ge \psi \rbrace $, where $\psi $ is a fixed function, under standard growth conditions of $p$-type, i.e. \[ L^{-1}|z|^p \le f(x,s,z) \le L(1+|z|^p). \]
DOI : 10.1007/s10492-007-0007-4
Classification : 35J85, 49J40, 49N60
Keywords: regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions
@article{10_1007_s10492_007_0007_4,
     author = {Eleuteri, Michela},
     title = {Regularity results for a class of obstacle problems},
     journal = {Applications of Mathematics},
     pages = {137--170},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2007},
     doi = {10.1007/s10492-007-0007-4},
     mrnumber = {2305870},
     zbl = {1164.49009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0007-4/}
}
TY  - JOUR
AU  - Eleuteri, Michela
TI  - Regularity results for a class of obstacle problems
JO  - Applications of Mathematics
PY  - 2007
SP  - 137
EP  - 170
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0007-4/
DO  - 10.1007/s10492-007-0007-4
LA  - en
ID  - 10_1007_s10492_007_0007_4
ER  - 
%0 Journal Article
%A Eleuteri, Michela
%T Regularity results for a class of obstacle problems
%J Applications of Mathematics
%D 2007
%P 137-170
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0007-4/
%R 10.1007/s10492-007-0007-4
%G en
%F 10_1007_s10492_007_0007_4
Eleuteri, Michela. Regularity results for a class of obstacle problems. Applications of Mathematics, Tome 52 (2007) no. 2, pp. 137-170. doi : 10.1007/s10492-007-0007-4. http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0007-4/

Cité par Sources :