Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach
Applications of Mathematics, Tome 52 (2007) no. 2, pp. 117-135 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper studies the existence of solutions to the singular boundary value problem \[ \left\rbrace \begin{array}{ll}-u^{\prime \prime }=g(t,u)+h(t,u),\quad t\in (0,1) , u(0)=0=u(1), \end{array}\right.\] where $g\:(0,1)\times (0,\infty )\rightarrow \mathbb{R}$ and $h\:(0,1)\times [0,\infty )\rightarrow [0,\infty )$ are continuous. So our nonlinearity may be singular at $t=0,1$ and $u=0$ and, moreover, may change sign. The approach is based on an approximation method together with the theory of upper and lower solutions.
This paper studies the existence of solutions to the singular boundary value problem \[ \left\rbrace \begin{array}{ll}-u^{\prime \prime }=g(t,u)+h(t,u),\quad t\in (0,1) , u(0)=0=u(1), \end{array}\right.\] where $g\:(0,1)\times (0,\infty )\rightarrow \mathbb{R}$ and $h\:(0,1)\times [0,\infty )\rightarrow [0,\infty )$ are continuous. So our nonlinearity may be singular at $t=0,1$ and $u=0$ and, moreover, may change sign. The approach is based on an approximation method together with the theory of upper and lower solutions.
DOI : 10.1007/s10492-007-0006-5
Classification : 34B15, 34B16
Keywords: singular boundary value problem; positive solution; upper and lower solution
@article{10_1007_s10492_007_0006_5,
     author = {L\"u, Haishen and O'Regan, Donal and Agarwal, Ravi P.},
     title = {Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach},
     journal = {Applications of Mathematics},
     pages = {117--135},
     year = {2007},
     volume = {52},
     number = {2},
     doi = {10.1007/s10492-007-0006-5},
     mrnumber = {2305869},
     zbl = {1164.34351},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0006-5/}
}
TY  - JOUR
AU  - Lü, Haishen
AU  - O'Regan, Donal
AU  - Agarwal, Ravi P.
TI  - Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach
JO  - Applications of Mathematics
PY  - 2007
SP  - 117
EP  - 135
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0006-5/
DO  - 10.1007/s10492-007-0006-5
LA  - en
ID  - 10_1007_s10492_007_0006_5
ER  - 
%0 Journal Article
%A Lü, Haishen
%A O'Regan, Donal
%A Agarwal, Ravi P.
%T Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach
%J Applications of Mathematics
%D 2007
%P 117-135
%V 52
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0006-5/
%R 10.1007/s10492-007-0006-5
%G en
%F 10_1007_s10492_007_0006_5
Lü, Haishen; O'Regan, Donal; Agarwal, Ravi P. Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach. Applications of Mathematics, Tome 52 (2007) no. 2, pp. 117-135. doi: 10.1007/s10492-007-0006-5

Cité par Sources :