Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach
Applications of Mathematics, Tome 52 (2007) no. 2, pp. 117-135
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper studies the existence of solutions to the singular boundary value problem \[ \left\rbrace \begin{array}{ll}-u^{\prime \prime }=g(t,u)+h(t,u),\quad t\in (0,1) , u(0)=0=u(1), \end{array}\right.\] where $g\:(0,1)\times (0,\infty )\rightarrow \mathbb{R}$ and $h\:(0,1)\times [0,\infty )\rightarrow [0,\infty )$ are continuous. So our nonlinearity may be singular at $t=0,1$ and $u=0$ and, moreover, may change sign. The approach is based on an approximation method together with the theory of upper and lower solutions.
This paper studies the existence of solutions to the singular boundary value problem \[ \left\rbrace \begin{array}{ll}-u^{\prime \prime }=g(t,u)+h(t,u),\quad t\in (0,1) , u(0)=0=u(1), \end{array}\right.\] where $g\:(0,1)\times (0,\infty )\rightarrow \mathbb{R}$ and $h\:(0,1)\times [0,\infty )\rightarrow [0,\infty )$ are continuous. So our nonlinearity may be singular at $t=0,1$ and $u=0$ and, moreover, may change sign. The approach is based on an approximation method together with the theory of upper and lower solutions.
DOI :
10.1007/s10492-007-0006-5
Classification :
34B15, 34B16
Keywords: singular boundary value problem; positive solution; upper and lower solution
Keywords: singular boundary value problem; positive solution; upper and lower solution
@article{10_1007_s10492_007_0006_5,
author = {L\"u, Haishen and O'Regan, Donal and Agarwal, Ravi P.},
title = {Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach},
journal = {Applications of Mathematics},
pages = {117--135},
year = {2007},
volume = {52},
number = {2},
doi = {10.1007/s10492-007-0006-5},
mrnumber = {2305869},
zbl = {1164.34351},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0006-5/}
}
TY - JOUR AU - Lü, Haishen AU - O'Regan, Donal AU - Agarwal, Ravi P. TI - Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach JO - Applications of Mathematics PY - 2007 SP - 117 EP - 135 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0006-5/ DO - 10.1007/s10492-007-0006-5 LA - en ID - 10_1007_s10492_007_0006_5 ER -
%0 Journal Article %A Lü, Haishen %A O'Regan, Donal %A Agarwal, Ravi P. %T Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach %J Applications of Mathematics %D 2007 %P 117-135 %V 52 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0006-5/ %R 10.1007/s10492-007-0006-5 %G en %F 10_1007_s10492_007_0006_5
Lü, Haishen; O'Regan, Donal; Agarwal, Ravi P. Existence to singular boundary value problems with sign changing nonlinearities using an approximation method approach. Applications of Mathematics, Tome 52 (2007) no. 2, pp. 117-135. doi: 10.1007/s10492-007-0006-5
Cité par Sources :