The Neumann problem for some degenerate elliptic equations
Applications of Mathematics, Tome 51 (2006) no. 6, pp. 619-628
In the paper we study the equation $Lu=f$, where $L$ is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set ${\Omega }$. We prove existence and uniqueness of solutions in the space $H(\Omega )$ for the Neumann problem.
In the paper we study the equation $Lu=f$, where $L$ is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set ${\Omega }$. We prove existence and uniqueness of solutions in the space $H(\Omega )$ for the Neumann problem.
DOI :
10.1007/s10492-006-0025-7
Classification :
35J25, 35J70
Keywords: Neumann problem; degenerate elliptic equations
Keywords: Neumann problem; degenerate elliptic equations
@article{10_1007_s10492_006_0025_7,
author = {Cavalheiro, Albo Carlos},
title = {The {Neumann} problem for some degenerate elliptic equations},
journal = {Applications of Mathematics},
pages = {619--628},
year = {2006},
volume = {51},
number = {6},
doi = {10.1007/s10492-006-0025-7},
mrnumber = {2291786},
zbl = {1164.35362},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0025-7/}
}
TY - JOUR AU - Cavalheiro, Albo Carlos TI - The Neumann problem for some degenerate elliptic equations JO - Applications of Mathematics PY - 2006 SP - 619 EP - 628 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0025-7/ DO - 10.1007/s10492-006-0025-7 LA - en ID - 10_1007_s10492_006_0025_7 ER -
Cavalheiro, Albo Carlos. The Neumann problem for some degenerate elliptic equations. Applications of Mathematics, Tome 51 (2006) no. 6, pp. 619-628. doi: 10.1007/s10492-006-0025-7
Cité par Sources :