On stability of the $P^{\rm mod}_ n/P_ n$ element for incompressible flow problems
Applications of Mathematics, Tome 51 (2006) no. 5, pp. 473-493.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is well known that finite element spaces used for approximating the velocity and the pressure in an incompressible flow problem have to be stable in the sense of the inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint is not applied. In this paper we consider a recently introduced class of triangular nonconforming finite elements of $n$th order accuracy in the energy norm called $P_n^{}$ elements. For $n\le 3$ we show that the stability condition holds if the velocity space is constructed using the $P_n^{}$ elements and the pressure space consists of continuous piecewise polynomial functions of degree $n$.
DOI : 10.1007/s10492-006-0017-7
Classification : 65N12, 65N30, 76D05, 76M10
Keywords: nonconforming finite element method; inf-sup condition; incompressible flow problem
@article{10_1007_s10492_006_0017_7,
     author = {Knobloch, Petr},
     title = {On stability of the $P^{\rm mod}_ n/P_ n$ element for incompressible flow problems},
     journal = {Applications of Mathematics},
     pages = {473--493},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2006},
     doi = {10.1007/s10492-006-0017-7},
     mrnumber = {2261635},
     zbl = {1164.76325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0017-7/}
}
TY  - JOUR
AU  - Knobloch, Petr
TI  - On stability of the $P^{\rm mod}_ n/P_ n$ element for incompressible flow problems
JO  - Applications of Mathematics
PY  - 2006
SP  - 473
EP  - 493
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0017-7/
DO  - 10.1007/s10492-006-0017-7
LA  - en
ID  - 10_1007_s10492_006_0017_7
ER  - 
%0 Journal Article
%A Knobloch, Petr
%T On stability of the $P^{\rm mod}_ n/P_ n$ element for incompressible flow problems
%J Applications of Mathematics
%D 2006
%P 473-493
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0017-7/
%R 10.1007/s10492-006-0017-7
%G en
%F 10_1007_s10492_006_0017_7
Knobloch, Petr. On stability of the $P^{\rm mod}_ n/P_ n$ element for incompressible flow problems. Applications of Mathematics, Tome 51 (2006) no. 5, pp. 473-493. doi : 10.1007/s10492-006-0017-7. http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0017-7/

Cité par Sources :