From scalar to vector optimization
Applications of Mathematics, Tome 51 (2006) no. 1, pp. 5-36.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem $\phi (x)\rightarrow \min $, $x\in \mathbb{R}^m$, are given. These conditions work with arbitrary functions $\phi \:\mathbb{R}^m \rightarrow \overline{\mathbb{R}}$, but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It is shown that the answer is affirmative if $\phi $ is of class ${\mathcal C}^{1,1}$ (i.e., differentiable with locally Lipschitz derivative). Further, considering ${\mathcal C}^{1,1}$ functions, the discussion is raised to unconstrained vector optimization problems. Using the so called “oriented distance” from a point to a set, we generalize to an arbitrary ordering cone some second-order necessary conditions and sufficient conditions given by Liu, Neittaanmäki, Křížek for a polyhedral cone. Furthermore, we show that the conditions obtained are sufficient not only for efficiency but also for strict efficiency.
DOI : 10.1007/s10492-006-0002-1
Classification : 49J52, 90C29, 90C30
Keywords: scalar and vector optimization; ${\mathcal C}^{1, 1}$ functions; Hadamard and Dini derivatives; second-order optimality conditions; Lagrange multipliers.
@article{10_1007_s10492_006_0002_1,
     author = {Ginchev, Ivan and Guerraggio, Angelo and Rocca, Matteo},
     title = {From scalar to vector optimization},
     journal = {Applications of Mathematics},
     pages = {5--36},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2006},
     doi = {10.1007/s10492-006-0002-1},
     mrnumber = {2197320},
     zbl = {1164.90399},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0002-1/}
}
TY  - JOUR
AU  - Ginchev, Ivan
AU  - Guerraggio, Angelo
AU  - Rocca, Matteo
TI  - From scalar to vector optimization
JO  - Applications of Mathematics
PY  - 2006
SP  - 5
EP  - 36
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0002-1/
DO  - 10.1007/s10492-006-0002-1
LA  - en
ID  - 10_1007_s10492_006_0002_1
ER  - 
%0 Journal Article
%A Ginchev, Ivan
%A Guerraggio, Angelo
%A Rocca, Matteo
%T From scalar to vector optimization
%J Applications of Mathematics
%D 2006
%P 5-36
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0002-1/
%R 10.1007/s10492-006-0002-1
%G en
%F 10_1007_s10492_006_0002_1
Ginchev, Ivan; Guerraggio, Angelo; Rocca, Matteo. From scalar to vector optimization. Applications of Mathematics, Tome 51 (2006) no. 1, pp. 5-36. doi : 10.1007/s10492-006-0002-1. http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0002-1/

Cité par Sources :