Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners
Applications of Mathematics, Tome 50 (2005) no. 6, pp. 569-581
Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.
Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.
DOI :
10.1007/s10492-005-0038-7
Classification :
51M20, 65N30, 65N50
Keywords: partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction
Keywords: partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction
@article{10_1007_s10492_005_0038_7,
author = {Beilina, Larisa and Korotov, Sergey and K\v{r}{\'\i}\v{z}ek, Michal},
title = {Nonobtuse tetrahedral partitions that refine locally towards {Fichera-like} corners},
journal = {Applications of Mathematics},
pages = {569--581},
year = {2005},
volume = {50},
number = {6},
doi = {10.1007/s10492-005-0038-7},
mrnumber = {2181027},
zbl = {1099.65105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0038-7/}
}
TY - JOUR AU - Beilina, Larisa AU - Korotov, Sergey AU - Křížek, Michal TI - Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners JO - Applications of Mathematics PY - 2005 SP - 569 EP - 581 VL - 50 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0038-7/ DO - 10.1007/s10492-005-0038-7 LA - en ID - 10_1007_s10492_005_0038_7 ER -
%0 Journal Article %A Beilina, Larisa %A Korotov, Sergey %A Křížek, Michal %T Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners %J Applications of Mathematics %D 2005 %P 569-581 %V 50 %N 6 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0038-7/ %R 10.1007/s10492-005-0038-7 %G en %F 10_1007_s10492_005_0038_7
Beilina, Larisa; Korotov, Sergey; Křížek, Michal. Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners. Applications of Mathematics, Tome 50 (2005) no. 6, pp. 569-581. doi: 10.1007/s10492-005-0038-7
Cité par Sources :