On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory
Applications of Mathematics, Tome 50 (2005) no. 6, pp. 555-568
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the vector $p$-Laplacian \[ \left\rbrace \begin{array}{ll}-(| u^{\prime }| ^{p-2}u^{\prime })^{\prime }=\nabla F(t,u) \quad \text{a.e.}\hspace{5.0pt}t\in [0,T], u(0) =u(T),\quad u^{\prime }(0)=u^{\prime }(T),\quad 1\infty . \end{array}\right. \qquad \mathrm{(*)}\] We prove that there exists a sequence $(u_n)$ of solutions of ($*$) such that $u_n$ is a critical point of $\varphi $ and another sequence $(u_n^{*}) $ of solutions of $(*)$ such that $u_n^{*}$ is a local minimum point of $\varphi $, where $\varphi $ is a functional defined below.
We study the vector $p$-Laplacian \[ \left\rbrace \begin{array}{ll}-(| u^{\prime }| ^{p-2}u^{\prime })^{\prime }=\nabla F(t,u) \quad \text{a.e.}\hspace{5.0pt}t\in [0,T], u(0) =u(T),\quad u^{\prime }(0)=u^{\prime }(T),\quad 1\infty . \end{array}\right. \qquad \mathrm{(*)}\] We prove that there exists a sequence $(u_n)$ of solutions of ($*$) such that $u_n$ is a critical point of $\varphi $ and another sequence $(u_n^{*}) $ of solutions of $(*)$ such that $u_n^{*}$ is a local minimum point of $\varphi $, where $\varphi $ is a functional defined below.
DOI :
10.1007/s10492-005-0037-8
Classification :
34B15, 34C25
Keywords: $p$-Laplacian equation; periodic solution; critical point theory
Keywords: $p$-Laplacian equation; periodic solution; critical point theory
@article{10_1007_s10492_005_0037_8,
author = {L\"u, Haishen and O'Regan, Donal and Agarwal, Ravi P.},
title = {On the existence of multiple periodic solutions for the vector $p${-Laplacian} via critical point theory},
journal = {Applications of Mathematics},
pages = {555--568},
year = {2005},
volume = {50},
number = {6},
doi = {10.1007/s10492-005-0037-8},
mrnumber = {2181026},
zbl = {1099.34021},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0037-8/}
}
TY - JOUR AU - Lü, Haishen AU - O'Regan, Donal AU - Agarwal, Ravi P. TI - On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory JO - Applications of Mathematics PY - 2005 SP - 555 EP - 568 VL - 50 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0037-8/ DO - 10.1007/s10492-005-0037-8 LA - en ID - 10_1007_s10492_005_0037_8 ER -
%0 Journal Article %A Lü, Haishen %A O'Regan, Donal %A Agarwal, Ravi P. %T On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory %J Applications of Mathematics %D 2005 %P 555-568 %V 50 %N 6 %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0037-8/ %R 10.1007/s10492-005-0037-8 %G en %F 10_1007_s10492_005_0037_8
Lü, Haishen; O'Regan, Donal; Agarwal, Ravi P. On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory. Applications of Mathematics, Tome 50 (2005) no. 6, pp. 555-568. doi: 10.1007/s10492-005-0037-8
Cité par Sources :