On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory
Applications of Mathematics, Tome 50 (2005) no. 6, pp. 555-568.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the vector $p$-Laplacian \[ \left\rbrace \begin{array}{ll}-(| u^{\prime }| ^{p-2}u^{\prime })^{\prime }=\nabla F(t,u) \quad \text{a.e.}\hspace{5.0pt}t\in [0,T], u(0) =u(T),\quad u^{\prime }(0)=u^{\prime }(T),\quad 1\infty . \end{array}\right. \qquad \mathrm{(*)}\] We prove that there exists a sequence $(u_n)$ of solutions of ($*$) such that $u_n$ is a critical point of $\varphi $ and another sequence $(u_n^{*}) $ of solutions of $(*)$ such that $u_n^{*}$ is a local minimum point of $\varphi $, where $\varphi $ is a functional defined below.
DOI : 10.1007/s10492-005-0037-8
Classification : 34B15, 34C25
Keywords: $p$-Laplacian equation; periodic solution; critical point theory
@article{10_1007_s10492_005_0037_8,
     author = {L\"u, Haishen and O'Regan, Donal and Agarwal, Ravi P.},
     title = {On the existence of multiple periodic solutions for the vector $p${-Laplacian} via critical point theory},
     journal = {Applications of Mathematics},
     pages = {555--568},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2005},
     doi = {10.1007/s10492-005-0037-8},
     mrnumber = {2181026},
     zbl = {1099.34021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0037-8/}
}
TY  - JOUR
AU  - Lü, Haishen
AU  - O'Regan, Donal
AU  - Agarwal, Ravi P.
TI  - On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory
JO  - Applications of Mathematics
PY  - 2005
SP  - 555
EP  - 568
VL  - 50
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0037-8/
DO  - 10.1007/s10492-005-0037-8
LA  - en
ID  - 10_1007_s10492_005_0037_8
ER  - 
%0 Journal Article
%A Lü, Haishen
%A O'Regan, Donal
%A Agarwal, Ravi P.
%T On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory
%J Applications of Mathematics
%D 2005
%P 555-568
%V 50
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0037-8/
%R 10.1007/s10492-005-0037-8
%G en
%F 10_1007_s10492_005_0037_8
Lü, Haishen; O'Regan, Donal; Agarwal, Ravi P. On the existence of multiple periodic solutions for the vector $p$-Laplacian via critical point theory. Applications of Mathematics, Tome 50 (2005) no. 6, pp. 555-568. doi : 10.1007/s10492-005-0037-8. http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0037-8/

Cité par Sources :